1 / 23

Introduction to ARM A15 Linux DSP Platform Software Apps Team 04/19/2013

Introduction to ARM A15 Linux DSP Platform Software Apps Team 04/19/2013. 1. Outline. ARM Cortex-A15 Overview ARM A15 Linux Overview U-boot Two Stage Bootloading Boot Monitor SMP Boot Sequence LPAE Linux Drivers. 2. ARM A15 Overview.

finola
Download Presentation

Introduction to ARM A15 Linux DSP Platform Software Apps Team 04/19/2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to ARM A15 LinuxDSP Platform Software Apps Team04/19/2013 TI Confidential - NDA Restrictions 1

  2. Outline • ARM Cortex-A15 Overview • ARM A15 Linux Overview • U-boot • Two Stage Bootloading • Boot Monitor • SMP Boot Sequence • LPAE • Linux Drivers 2 TI Confidential - NDA Restrictions

  3. ARM A15 Overview • ARMv7-A Cortex - the latest member of the Cortex-A series of processors • 1-4x SMP within a single processor cluster and low power consumption • Thumb-2 Technology • TrustZone Security • Floating Point • NEON • Hardware Virtualization • Large Physical Address Extension (LPAE) 3 TI Confidential - NDA Restrictions

  4. Thumb-2 Technology • Thumb Mode • 16-bit Thumb instructions vs 32-bit ARM instructions • Thumb-2 extends with additional 32-bit instructions • Code density similar to Thumb • up to a 30% reduction in memory to store instructions • Performance similar to the ARM instruction set on 32-bit memory

  5. TrustZone Security • 2 virtual processors backed by hardware based access control • Enable application core to switch between 2 states (worlds) • Each world can operate independently while using the same core. • Memory and peripherals are made aware of the operating world and provide access control • Secure Monitor is code that runs in secure Monitor mode and processes switches to and from the secure world

  6. Floating Point • Vector Floating Point (VFP) is an FPU coprocessor extension to the ARM architecture • Hardware support for FP operations in half-, single- and double-precision floating point arithmetic.

  7. NEON • Advanced SIMD extension, or Media Processing Engine (MPE) • A combined 64- and 128-bit SIMD instruction set • Provides acceleration for media and signal application • NEON hardware shares the same floating-point registers as used in VFP. Linux version: 3.6.0, GCC version: Linaro 4.6.3

  8. Hardware Virtualization • Hardware support for multiple software environments available on the same physical processor • Software applications can access the system capabilities simultaneously • Virtual envrionments are isolated from each other

  9. LPAE • 64-bit “long-descriptor” format for page tables • Supports 40-bit physical address – up to 1TB of memory

  10. ARM A15 Linux Overview • U-boot • Two Stage Bootloading • Boot Monitor • SMP Boot Sequence • LPAE • Linux Drivers

  11. U-Boot • Based on the Universal Boot Loader public project • Program that moves executable from non-volatile memory to memory and then transfers CPU control to the newly “loaded” executable • Minimal drivers • SPI • I2C • UART • NAND • ETH • USB

  12. Two Stage Bootloading • ROM Boot Loader(RBL) loads Secondary Program Loader (SPL) from SPI NOR flash • SPL loads and run the second stage boot loader, a full version of U-Boot) from NOR or NAND • Keystone II – SPI boot mode • The first 64K of the SPI NOR flash is flashed with SPL • Followed by U-Boot image

  13. Boot Monitor • ARM Cortex A15 requires certain functions to be executed in the PL1 privilege level • Provides secure privilege level execution service for Linux Kernel code through SMC calls

  14. Boot Monitor – High level architecture

  15. Boot Sequence – Primary Core • RBL is run on Power On reset • After completion, load and run u-boot in non-secure mode • Boot Monitor gets installed • As part of non-secure entry, boot monitor calls the RBL API through SMC call (SMC #0) passing _init() entry point address. • RBL enters monitor mode, _init() inits the monitor vector and calls init() to init Core/CPU specific inits, set the primary/secondary flag, the Set the secondary core non-secure entry point address • Back to non-secure mode and booting of linux kernel • At linux start up, primary core make SMC call to power on each of the secondary cores • Primary core waits for secondary cores to boot up and then proceeds to rest of booting sequence TI Confidential - NDA Restrictions

  16. Boot Sequence – Secondary Core • On Power On reset, RBL initializes and enters the secondary entry point address of the Boot Monitor core through SMC call (SMC #0) • RBL enters monitor mode, _init() inits the monitor vector and calls init() to init Core/CPU specific inits. • On return from _init(), it jumps to secondary kernel entry point address and start booting 2nd instance of Linux kernel

  17. LPAE • DDR3A memory address space 0x08 0000 0000 – 0x09 FFFF FFFF • Cortex-A15 LPAE with 40-bit address bus may access if MMU is on • ARM has only 32-bit effective address bus if MMU is off • To access DDR3A when MMU is off • MSMC maps first 2GB to 0x00 8000 0000 – 0x00 FFFF FFFF • The aliased address space can be used when MMU is on or off • Keystone II does not support cache coherency for the aliased address space • Default memory property of TCI6638 is 0x8000 0000 size 0x2000 0000 • When U-boot boots the kernel, it can modify the default start address. • If mem_lpae=0, U-boot does not modify • If mem_lpae=1, U-boot sets the start address to 0x08 0000 0000

  18. Linux Drivers • GIC IRQ chip driver • Keystone IPC IRQ chip driver • SMP • AEMIF driver • NAND driver • SPI and SPI NOR flash drivers • I2C and EEPROM drivers • Keystone GPIO driver • Keystone IPC GPIO driver • Network driver (NetCP), PktDMA, Packet Accelerator • SGMII driver • QoS driver • USB driver • 10Gig Ethernet driver (not validated due to test hardware) • PCIe driver

  19. Getting Started with MCSDK

  20. Prerequisite • K2EVM-HK (Follow Hardware setup guide to make sure you have the latest BMC updates) http://processors.wiki.ti.com/index.php/EVMK2H_Hardware_Setup • User guide: (getting started guide & exploring as well) http://processors.wiki.ti.com/index.php/MCSDK_User_Guide_for_KeyStone_II • Download MCSDK: http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html • Ubuntu Linux 12.04 LTS machine, set up Proxy (consult IT)

  21. Install CCS & MCSDK • 1. Install CCSv5.3.0 at <CCS default Installed Directory>. For processor architecture, make sure "C6x DSP + ARM processors" is selected. • 2. Install TI KeyStone2 Emupack, ti_emupack_keystone2_setup_1.0.0.2 If installed on Linux, replace \ with / in this file /opt/ti/ccsv5/ccs_base/common/targetdb/devices/TCI6638.xml • 3. Install MCSDK 3.00.00.09, same directory as CCS, e.g.: /opt/ti • 4. copy the file tci6638-evm.ccxml from mcsdk_linux_3_00_00_09/host-tools/loadlin folder to ~/<user>/ti/CCSTargetConfiguration folder where the CCS saves the user specific configuration file.

  22. Build Prerequisite • Toolchain installation: Download the gcc-linaro-arm-linux-gnueabi-2012.03-20120326_linux.tar.bz2 from https://launchpad.net/linaro-toolchain-binaries/trunk/2012.03 cd ~/ tar xjf gcc-linaro-arm-linux-gnueabi-2012.03-20120326_linux.tar.bz2 export CROSS_COMPILE=arm-linux-gnueabi- export ARCH=arm PATH=$HOME/gcc-linaro-arm-linux-gnueabi-2012.03-20120326_linux/bin:$PATH • Configure git and install packages needed at build time: sudo apt-get install git-core sudo apt-get install build-essential subversion ccache sed wget cvs coreutils unzip texinfo docbook-utils gawk help2man diffstat file g++ texi2html bison flex htmldoc chrpath libxext-dev xserver-xorg-dev doxygen bitbake uboot-mkimage libncurses5-dev

  23. Getting started with MCSDK • Either use prebuilt images or build Uboot, boot monitor, kernel & file system on your own. • File systems supported: ramfs, Net mounted file system, UBIFS. Configure environment variable as per user’s guide. • Getting Kernel & file system to boot • Run applications

More Related