Slide1 l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 37

Orleans July 2004 PowerPoint PPT Presentation


  • 68 Views
  • Uploaded on
  • Presentation posted in: General

Orleans July 2004. Networks in physics and biology . Potential Energy Landscape in Models for Liquids. In collaboration with E. La Nave, A. Moreno, I. Saika-Voivod, E. Zaccarelli. A 3-slides preamble: Thermodynamics and Dynamics Review of thermodynamic formalism in the PEL approach

Download Presentation

Orleans July 2004

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Slide1 l.jpg

Orleans July 2004

Networks in physics and biology

Potential Energy Landscape

in

Models for Liquids

In collaboration with

E. La Nave, A. Moreno, I. Saika-Voivod, E. Zaccarelli


Outline l.jpg

A 3-slides preamble: Thermodynamics and Dynamics

Review of thermodynamic formalism in the PEL approach

Potential Energy Landscapes in Fragile and Strong (Network-Forming) liquids.

Outline

Outline


Slide3 l.jpg

Strong and Fragile liquids Dynamics

A slowing down that cover more than 15 order of magnitudes

P.G. Debenedetti, and F.H. Stillinger, Nature 410, 259 (2001).

1


Why do we care thermodyanmics l.jpg

A Decrease in Configurational Entropy: Thermodynamics

Why do we care Thermodyanmics

Is the excess entropy vanishing at a finite T ?

1


The basic idea separation of time scales l.jpg

The basic idea: Separation of time scales

f(t)

glass

liquid

f(t)

van Megen and S.M. Underwood

Phys. Rev. Lett. 70, 2766 (1993)

Glass

Supercooled Liquid

log(t)


Potential energy landscape a 3n dimensional surface l.jpg

Potential Energy Landscape, a 3N dimensional surface

Statistical description of the number, depth and shape

of the PEL basins

e

IS

P

IS

w

The PEL does not depend on TThe exploration of the PEL depends on T


Z t s z i t l.jpg

Z(T)= S Zi(T)

allbasins i

fbasin i(T)= -kBT ln[Zi(T)]

fbasin(eIS,T)= eIS+ kBTSln [hwj(eIS)/kBT] + fanharmonic(eIS, T)

normal modes j


Slide9 l.jpg

Thermodynamics in the IS formalism

Stillinger-Weber

F(T)=-kBT ln[W(<eIS>)]+fbasin(<eIS>,T)

with

Basin depth and shape

fbasin(eIS,T)= eIS+fvib(eIS,T)

and

Number of explored basins

Sconf(T)=kBln[W(<eIS>)]


Real space l.jpg

Distribution of local minima (eIS)

Configuration Space

+

Real Space

Vibrations (evib)

rN

evib

eIS


From simulations l.jpg

<eIS>(T) (steepest descent minimization)

fbasin(eIS,T) (harmonic and anharmonic contributions)

F(T) (thermodynamic integration from ideal gas)

From simulations…..

F(T)=-kBT ln[W(<eIS>)]+fbasin(<eIS>,T)

E. La Nave et al., Numerical Evaluation of the Statistical Properties of

a Potential Energy Landscape, J. Phys.: Condens. Matter 15, S1085 (2003).


Fragile liquids the random energy model for e is l.jpg

Fragile Liquids: The Random Energy Model for eIS

Hypothesis:

e-(eIS -E0)2/2s 2

W(eIS)deIS=eaN -----------------deIS

2ps2

S ln[wi(eIS)]=a+b eIS

Predictions:

<eIS(T)>=E0-bs 2 - s 2/kT

Sconf(T)=aN-(<eIS (T)>-E0)2/2s 2


T dependence of e is l.jpg

T-dependence of <eIS>

SPC/E

LW-OTP

T-1 dependence observed in the studied T-range

Support for the Gaussian Approximation


Bmlj sconf l.jpg

BMLJ Sconf

BMLJ Configurational Entropy


Landscape equation of state l.jpg

Landscape Equation of State

P=-∂F/∂V|T

F(V,T)=-TSconf(T,V)+<eIS(T,V)>+fvib(T,V)

In Gaussian (and harmonic) approximation

P(T,V)=Pconst(V)+PT(V) T + P1/T(V)/T

Pconst(V)= - d/dV [E0-bs2]

PT(V) =R d/dV [a-a-bE0+b2s2/2]

P1/T(V) = d/dV [s2/2R]


Non gaussian behaviour in bks silica l.jpg

Non Gaussian Behaviour in BKS silica


Sconf silica l.jpg

Sconf Silica

Non-Gaussian Behavior in SiO2

Eis e S conf for silica…

Esempio di forte

Non gaussian silica


Density minima l.jpg

Density minimum and CV maximum in ST2 water

Density Minima

P.Poole

inflection in energy

inflection = CV max


St2 2650 punti l.jpg

ST2 2650 punti

Isochores of liquid ST2 water

  • HDL

LDL

?


Maximum valency l.jpg

Maximum Valency

Maximum Valency Model (Speedy-Debenedetti)

V(r

)

SW if # of bonded particles <= Nmax

HS if # of bonded particles > Nmax

r

A minimal model for network forming liquids

The IS configurations coincide with the bonding pattern !!!


Basin free energy l.jpg

It is possible to calculate exactly the basin free energy !

Basin Free energy


Ground state energy known l.jpg

Ground State Energy Known !

It is possible to equilibrate

at low T !

Energy per Particle


Viscosity and diffusivity arrhenius l.jpg

Viscosity and Diffusivity: Arrhenius


Configurational entropy l.jpg

Configurational Entropy


Suggestions for further studies l.jpg

Fragile Liquids

Gaussian Energy Landscape

Finite TK, Sconf(TK)=0

Strong Liquids:

“Bond Defect” landscape (binomial)

A “quantized” bottom of the landscape !

Degenerate Ground State

Sconf(T=0) different from zero !

Suggestions for further studies…..


Acknowledgements l.jpg

Acknowledgements

We acknowledge important discussions, comments, collaborations, criticisms from…

A. Angell, P. Debenedetti, T. Keyes, A. Heuer, G. Ruocco , S. Sastry, R. Speedy

… and their collaborators


Stoke einstein relation l.jpg

Stoke-Einstein Relation


Citazioni goldstein stillinger l.jpg

Citazioni goldstein, stillinger


Gaussian distribution l.jpg

Gaussian Distribution ?

eIS=SeiIS

E0=<eNIS>=Ne1IS

s2= s2N=N s21


Diffusivity l.jpg

Diffusivity


Phase diagram l.jpg

Phase Diagram

NMAX-modifiedPhase Diagram


The v dependence of a s 2 e 0 l.jpg

The V-dependence of a, s2, E0

e-(eIS -E0)2/2s 2

W(eIS)deIS=eaN -----------------deIS

2ps2


Spc e p t v p const v p t v t p 1 t v t l.jpg

SPC/E P(T,V)=Pconst(V)+PT(V) T + P1/T(V)/T

FS, E. La Nave, and P. Tartaglia, PRL. 91, 155701 (2003)


D st2 l.jpg

D ST2

Isobars of diffusion coefficient for ST2 water


Adam gibbs plot l.jpg

Adam-Gibbs Plot


Basin free energy36 l.jpg

Basin Free Energy

kBTSln [hwj(eIS)/kBT]

LW-OTP

SPC/E

S ln[wi(eIS)]=a+b eIS

…if b=0 …..


Eis nel tempo l.jpg

BKS Silica

Eis nel tempo


  • Login