1 / 101

Geothermal Energy for Everyone

Geothermal Energy for Everyone. Pre-Workshop Course Bandung, 5 Maret 2012. Schedule. 08.00 – 12.00 : Geothermal System Geothermal Exploration 13.00 – 17.00 : Geothermal Production and Utilization Environmental Aspects Geothermal Economics. Introduction. Bumi. Bumi.

fauve
Download Presentation

Geothermal Energy for Everyone

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geothermal Energy for Everyone Pre-Workshop Course Bandung, 5 Maret 2012

  2. Schedule 08.00 – 12.00 : Geothermal System Geothermal Exploration 13.00 – 17.00 : Geothermal Production and Utilization Environmental Aspects Geothermal Economics

  3. Introduction

  4. Bumi

  5. Bumi Struktur Bumidan Gradien Geotermal 30oC/km GradienTemperatur Rata-rata 1oC/km Temperatur (oC) Jari-jari (km)

  6. Bumi dan Tektonik Lempeng

  7. Geothermal System

  8. Definition • Geothermal system : A general term that describes natural heat transfer within a confined volume of the Earth’s crust where heat is transported from a heat source to a heat sink usually the free surface (Hochstein & Browne, 2000). • Heat transfer : • Conduction • Convection • Radiation

  9. Air permukaan Air permukaan

  10. Geothermal System (Goff & Janik, 2000) • Sistemhot dry rock yang memanfaatkanpanas yang tersimpandalambatuanberporositasrendahdantidakpermeabel. Temperatursisteminiberkisarantara 120 hingga 225°C dengankedalaman 2 hingga 4 km). • Sistemmagma tap yang memanfaatkanpanas yang keluardaritubuh magma dangkal. Padasistemini, magma merupakanbentuk paling murnipanasalamiah yang mempunyaitemperatur<1200°C

  11. Geothermal System • Sistem yang berasosiasidenganvolkanismeKuarterdanintrusi magma. Sisteminiumumnyamempunyaitemperatur<370°C dankedalaman reservoir <1,5 km. • Sistem yang berhubungandengantektonik, yaituterjadidilingkunganbackarc, zonakolisidansepanjangzonasesar. Sistemini yang telahdieksploitasiumumnyamempunyaitemperatur reservoir <250°C dankedalaman>1,5 km. • Sistem (yang dipengaruhioleh) geopressureditemukandicekungansedimen. Kedalaman reservoir sisteminiumumnya 1,5 hingga 3 km dantemperatur reservoir berkisardari 50 hingga 190°C.

  12. Hydrothermal System • Hydrothermal system : A type of geothermal system where heat transfers from a heat source to the surface by free convection, involving meteoricfluids with or without traces of magmatic fluids (Hochstein & Browne, 2000). • A hydrothermal system consists of : • a heat source, • a reservoir with thermal fluids, • a surrounding recharge, and • a (heat) discharge area at the surface with manifestation.

  13. Daerah resapan Daerah resapan Manifestasidi permukaan Sumurpanas bumi Reservoir Sumber panas (IGA, 2004) Schematic representation of an ideal hydrothermal system. A hydrothermal system can be described schematically as 'convecting water in the upper crust of the Earth, which, in a confined space, transfers heat from a heat source to a heat sink, usually the free surface' (Hochstein, 1990). It is made up of three main elements: a heat source, a reservoir and a fluid, which is the carrier that transfers the heat (IGA, 2004).

  14. Definition • Volcanic system : A type of geothermal system where heat and mass transfers from an igneous body (usually a magma chamber) to the surface involving convection of magmatic fluids; meteoric fluids are not involved in the heat transfer process or are minor (Hochstein & Browne, 2000). • Volcanic-Hydrothermal system : A combination of a hydrothermal and a volcanic systems, where ascending magmatic (primary) fluids commonly mix with meteoric (secondary) fluids (rarely sea water); also called a magmatic-hydrothermal system.

  15. Volcanic-Hydrothermal System Lawless (2008)

  16. Continental Type = Flat Terrain

  17. Island-Arc Type = High Terrain

  18. Indonesia mempunyaipotensipanasbumisebesar29GW atau sekitar 40% potensi dunia yang kebanyakan berasosiasi dengan gunung api strato (topografi tinggi). Smitsonian Natural Museum of History: Volcanoes of Indonesia

  19. Geothermal in Indonesia Total potential: 29,038 MW at 276 fields Resources: 13171 MW and Reserves: 15867 MW Installed capacity: 1196 MWe Non volcanic system

  20. Volcanic-Hydrohermal System in Java - Bali Hochstein & Sudarman (2008)

  21. Volcanic-Hydrohermal Systems in Sumatra Hochstein & Sudarman (2008)

  22. Other Hydrothermal System Berdasarkan : • Sumber panas • Temperatur (entalpi) reservoir • Fluida reservoir • dll

  23. Temperatur Reservoir Hochstein (1990)

  24. Fasa Fluida Reservoir

  25. Fasa Fluida Reservoir

  26. Fasa Fluida Reservoir

  27. Pola Aliran Fluida : upflow / outflow

  28. Morfologi / Geologi : Kaldera

  29. Morfologi / Geologi : Sesar

  30. Hal-hal yang perlu diperhatikan: • Heat source : depending on geological setting, the most favourable is large, long lived hdrothermal systems  age • Host rock: can be any type, most often volcanic, carbonate rocks may give problems  permeability • Size: generally 1 to 5 km2 (upflow), can be as long as 20 km (outflow)  resources • Fluids: mainly meteoric, dilute brine (~1/10 salinity of sea water), near-neutral pH, with dissolved gas of CO2(+H2S)  resources/reserve & production

  31. Fluida Panas Bumi

  32. Fluida Hidrotermal

  33. Boiling • Pemisahan 2 fasa fluida: • Air • Uap • Disertai dengan pemisahan: • Unsur terlarut, termasuk gas • Entalpi (panas yang disimpan) • Pada sistem panas bumi terjadi di kedalaman < 2 km

  34. Boiling Point

  35. Boiling Point Depth (BPD) 250oC (Haas, 1971)

  36. Boiling and Condensation (Lawless, 2008)

  37. Fluida Hidrotermal Reservoir water, 1,000-10,000 mg/kg Cl, neutral pH, trace of CO2 & H2S, SiO2 rich. Magmatic fluid, strong acid Steam heated, near surface water, pH of acid to near neutral

  38. Air Klorida (Cl) • Menunjukkanair reservoir • Mengandung 0,1 hingga 1,0 wt.% Cl • PerbandinganCl/SO4umumnyatinggi • Mengandungkationutama : Na, K, Ca dan Mg • Berasosiasidengan gas CO2dan H2S • pH sekitarnetral, dapatsedikitasamdanbasatergantung CO2terlarut • Sangatjernih, warnabirupadamataair natural • Kaya SiO2danseringterdapat HCO3- • Terbentukendapanpermukaansinter silika (SiO2)

  39. Air Sulfat (SO4) • Akibatkondensasiuap air kedalam air permukaan (steam heated water) • SO4tinggi (mencapai 1000 ppm) akibatoksidasi H2S dizonaoksidasidanmenghasilkan H2SO4 (H2S + O2 = H2SO4) • MengandungbeberapappmCl • Bersifatasam • Ditunjukkandengankenampakankolamlumpurdanpelarutanbatuansekitar • Di lingkungangunungapi : air asam SO4-Cl terbentukakibatkondensasiunsurvolatilmagmatikmenjadifasacair

  40. Air Sulfat - Klorida (SO4– Cl) Ta: Taal Ku: Kusatsu Shirane Kb: Kaba Tin, Tam: Kelimutu Ij: Ijen Po: Poas Ma: Maly Semiachik Pu: Kawah Putih Dem: Dempo Sv: Soufrière St.Vincent Qu: Quilotoa Kel: Kelud Sa: Segara Anak Ny, Mo: Nyos, Monoun The discharge of magmatic gases (SO2, H2S, HCl and HF) into a crater lake frequently lead to highly acidic sulfate-chloride waters. The lakes are too acidic to convert and store CO2 gas as bicarbonate ions (HCO3-).

  41. Air Bikarbonat (HCO3) • Terbentukpadadaerahpinggirdandangkalsistemgeotermal • Akibatadsorbsi gas CO2dankondensasiuap air kedalam air tanah (steam heated water) • RendahCldan SO4bervariasi • Di bawahmuka air tanahbersifatasamlemah, tetapidapatbersifatbasaolehhilangnya CO2terlarutdipermukaan • Di permukaandapatmembentukendapan sinter travertin (CaCO3)

  42. Fluida dan Permeabilitas • Lawless in WPRB Geothermal Lectures 2008

  43. Umur Fluida dan Sistem Panas Bumi • Residensi air: ~10.000 tahun • Umumnya 100 – 1.000 tahun • Dapat 20.000 – 40.000 tahun • Umur sistem panas bumi: 200.000 tahun (Kawerau, NZ), umumnya ~2.000 – 500.000 tahun

  44. Surface Manifestation

  45. KemunculanManifestasiDipengaruhi: Parameter-parameter fluidapanasbumi (e.g. densitas, viskositas, temperatur, tipe, dll). Parameter-parameter reservoar (e.g. permeabilitas, polaaliran, dll). Proses-prosespadafluidapanasbumi yang terjadidibawahpermukaan (e.g. pencampurandengan air dingin, boiling, kondensasi). Total panas yang adadireservoar.

More Related