1 / 23

Status of Construction and Commissioning of the GSI HITRAP Decelerator

Status of Construction and Commissioning of the GSI HITRAP Decelerator. Outline: Introduction and motivation Beam dynamics issues of the decelerator Status of the linac, trap and of the commissioning efforts. HITRAP. Charge state breeding. Production of multi-charged ions.

fausta
Download Presentation

Status of Construction and Commissioning of the GSI HITRAP Decelerator

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of Construction and Commissioning of the GSI HITRAP Decelerator Outline: • Introduction and motivation • Beam dynamics issues of the decelerator • Status of the linac, trap and of the commissioning efforts

  2. HITRAP Charge state breeding Production of multi-charged ions

  3. HITRAP schematic overview ~105 U92+ ions Experiments based on Penning traps • Laser spectroscopy • g-factor measurements of the bound electron • Mass measurements of extreme accuracy • Polarization of radio nuclides • Decay spectroscopy of highly-charged radio nuclides Collision experiments: • Collisions at very low velocities • Surface studies and hollow-atom spectroscopy • X-ray spectroscopy

  4. HITRAP linac overview • Frequency = 108.408 MHz • Max. A/q = 3 • Intensity ~ 107 charges per macro bunch to experiments 7m LEBT & Cooler trap IH section & MEBT DDB section VBL RFQ section 4MeV/u 0.5MeV/u 6keV/u 5keV*q

  5. ESR deceleration – From 400 to 4 MeV/u ESR cycle during recent experiment signal: time (s) RF amplitude 5..20 injection, stoch. cooling 3..10 deceleration 400 – 30 MeV/u 2..6 e- cooling, rebunching 2..5 deceleration 30 – 4 MeV/u magn.dipole field 2..5 e- cooling, ejection 3 reset magnets ion current 40 s • stochastic cooling at injection energy implemented • electron current for final cooling at 4 MeV/u increased

  6. Diagnostic box Bending magnet diag 2: FC(two directions) +MCP Drift: 6.67 m DDB Diagnostic box Beam in ESR Bending magnet magnetic quads Transport of the ions from the ESR to the DDB Expected beam properties: • Bunch length of 1 ms • Cooled beam with transverse emittance of ~1 mm mrad at 4 MeV/u • Energy spread ~0.01% Diagnostic used in high energy section: • Faraday cups • Profile grid • Scintillator screens (YAG)

  7. Transverse beam focusing Beam fromthe ESR Bending magnets ESR Double-drift-buncher Beam profiles! Magnetic quadrupoledoublet lenses horizontal direction vertical direction 120 mm

  8. HITRAP – Double Drift Buncher Bunch from ESR 1 ms RF – 108 MHz 9.2 ns Bunching 0.4 ns • Two coaxial resonators • 108.408 MHz cavity (4 gaps) • 216.816 MHz cavity (2 gaps) 4 MeV/u 0.5 MeV/u 6 keV/u

  9. 9 ns Cup signal in front of IH-structure bunch length 3 ms, 0.6 mA peak current Bunched Ions from the DDB 95% emittance ~6 mm mrad Ne10+, not cooled in ESR signal on diamond detector 6 keV/u RF signal of buncher

  10. The HITRAP – IH Structure • 25 gaps • Max. 10.5 MV eff. acc. voltage • Shunt impedance 290 MW/m • 1 inner tank lens (magn. triplet) For beam measurements:pepper pot emittance meterdiamond detectors 4 MeV/u 0.5 MeV/u 6 keV/u

  11. sensitive on entrance energy (here the case of 3.99 Mev/u) IH Structure – Energy Spectrum (LORASR) • Phase sensitive • not sensitive on the rf-amplitude G. Clemente

  12. Beam dynamics for 4 MeV/u beam Beam measurements horizontal vertical

  13. Beam dynamics for a decelerated beam (0.5 MeV/u) Beam measurements horizontal vertical

  14. Setup for beam measurement of beam properties fluorescence screen Slits Steerer diamond detectors pepper pot emittance meter

  15. MeV/u 4 0.5 0 From 4 MeV/u to 0.5 MeV/u • IH commissioning: deceleration from 4 MeV/uto 0.5 MeV/u • Energy signal on singlecrystal diamond detector: Diamond detector Magnetic deflection set to 4 MeV/u Magnetic deflection set to 0.5 MeV/u

  16. HITRAP – Decelerated Ions 12% beam profile on diamond 4 MeV/u 0.5 MeV/u 6 keV/u

  17. HITRAP – ReBuncher & RFQ • 4-rod RFQ and 2 gap spiral re-buncher • Last deceleration stage • rod voltage 77.5 kV • length = 2m 4 MeV/u 0.5 MeV/u 6 keV/u

  18. digitalcamera MCP FC First Beam behind RFQ BB1: 8,5V & 0° BB2: 6,1V & 150° all RF off BB1 & BB2 IH: 7,1V & 150° BB1, BB2 & IH RFQ: 6,0V & 90° low energy, low intensity MCP-based imaging detector

  19. U92+ e- e- HITRAP – LEBT & Cooler Trap • catch the ions in flight • cool them with combined electron and resistive cooling to ~ 4 Kelvin 0.5 MeV/u 6 keV/u 4 MeV/u

  20. HITRAP – LEBT & Cooler Trap • LEBT installed, trap magnet installed and tested • trap electrodes ready, assembly in progress 4 MeV/u 0.5 MeV/u 6 keV/u 4 MeV/u

  21. Summary • Installation of the LINAC and low energy transport completed • Offline tests of HITRAP cooler trap (are about to start) • Commissioning of linac ongoing • Identification of the ion energy is essential • Compact identification of particle energy is required

  22. HITRAP Collaboration F. Herfurth1, O. Kester2, W. Barth1, M. Bevcic1, K. Blaum3,4, M. Block1,K. Brantjes1, G. Clemente1, L. Dahl1, C. Dimopoulou1, S. Eliseev3, R. Fischer1, P. Forck1, M. Kaiser1, H.-J. Kluge1, C. Kozhuharov1, S. Kozudowski1, G. Maero1, F. Nolden1, B. O'Rourke1, J. Pfister5, W. Quint1,4, D. Racano1, U. Ratzinger5,A. Sauer5, A. Schempp5, A. Sokolov1, M. Steck1, T. Stöhlker1,4, M. Vogel1,W. Vinzenz1, G. Vorobjev1, C. Will1, D. Winters1, A. Wolf3, O. Zurkan1and the HITRAP collaboration 1GSI Darmstadt 2National Superconducting Cyclotron Laboratory, MSU, East Lansing 3Max-Planck-Institut für Kernphysik Heidelberg 4Ruprecht Karls-Universität Heidelberg 5J. W. Goethe-Universität Frankfurt am Main

  23. The GSI pepper pot emittance meter • matrix of 15x15 holes • diameter 100μm • spacing 1.6mm • drift length 150mm • 10-bit cooled CCD • df 0.3mrad beam

More Related