Occupancy
Download
1 / 37

Mathieu Benoit - PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on

Occupancy studies for CLIC_ILD inner layer and Update on Digitization : Tuning with data, Lorentz angle effects. Mathieu Benoit. Outline. First results on Occupancy for the inner layer of CLIC_ILD Following design from workshop

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Mathieu Benoit' - faunus


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Occupancystudies for CLIC_ILD inner layer and Update on Digitization: Tuningwith data, Lorentz angle effects

Mathieu Benoit


Outline
Outline

  • First results on Occupancy for the inner layer of CLIC_ILD Following design from workshop

  • Inclusion of Magnetic Field effects in Digitization

  • DESY 2-4 GeVelectrons data usingTimepix single chip card


(sub) Barrel 4 or

Right Outer barrel

(sub) Barrel 3 or

Right inner barrel

(sub) Barrel 2 or

Central barrel

(sub) Barrel 1 or

Leftinner barrel

(sub) Barrel 0 or

LeftOuter barrel


Simulation
Simulation

  • For Now simulation of layer 0+1, resultshere for layer 0 , the mostcriticalat r=29 mm

  • Simulation withLivermoreLow EM Physicslist

    • Max Step-size in Silicon =1 um

    • Includedetla rays , fluorescence

  • Geometry :

    • Magnetic Field = 4 T

    • Beryliumbeam pipe (600um)

    • Inside beampipe : air at 1e-2 bar

  • Timepix-Likedigitization

    • 20x20um pixels

    • 50 umthickness

    • Resistivity = 10 kOhm cm

    • Threshold = 500e

    • Lorentx angle not takenintoaccounthere

  • Plots are preliminary, need to includeactual gap in phi

    • Module 90 (top right) missing, beingprocessed


Barrel layout layer 0 1
Barrel layout (layer 0+1)

  • To ensurehermeticity, layer 0+1need to beplacedcloser to IP than MC model

    • Option 1:

      • Radius(layer 1) = 29 mm (31mm before)

      • Radius(layer 2) =30.87mm (32.87mm before)

      • To avoid volume overlap, slightly tilt the ladders (here1.5°)

    • Option 2:

      • Tilt sensors by lorentz angle (ex: 15 deg)

      • Add 1-2 ladders (here , 2-> Icosagon !)

      • Move back to larger radius (here31.221 mm)

mini workshop on engineering aspects of the CLIC vertex detectors


Barrel layout layer 0 1 option 1
Barrel layout (layer 0+1, option 1)

Single hits

Double layer, holding on the samemechanical structure not shownhere

An option to option 1: Shifting layer 2 vs layer 1 (here 1mm), ladder per ladder to avoidoverlapping gaps

mini workshop on engineering aspects of the CLIC vertex detectors


Event display 1k primary tracks
Event Display (1k primarytracks)


Hitmap in layer 0
HitMap in Layer 0


Hitmap layer 0 per train per chip
Hitmap Layer 0 (per Train per Chip)


Occupancy per module in layer 0
Occupancy per module in layer 0

%


Occupancy per module in layer 0 polar view
Occupancy per module in layer 0 (polar view)

%


Cluster size subbarrel 0 layer 0
Cluster size subbarrel 0 layer 0


Cluster size subbarrel 1 layer 0
Cluster size subbarrel 1 layer 0


Cluster size subbarrel 2 layer 0
Cluster size subbarrel 2 layer 0


Cluster size subbarrel 3 layer 0
Cluster size subbarrel 3 layer 0


Cluster size subbarrel 4 layer 0
Cluster size subbarrel 4 layer 0


Hitmap in layer 1
HitMap in Layer 1


Hitmap per train per mm2
HitMap (per Train per mm2)


Occupancy per module in layer 1
Occupancy per module in layer 1

%


Occupancy per module in layer 0 polar view1
Occupancy per module in layer 0 (polar view)

%


Cluster size subbarrel 0 layer 01
Cluster size subbarrel 0 layer 0


Cluster size subbarrel 1 layer 01
Cluster size subbarrel 1 layer 0


Cluster size subbarrel 2 layer 01
Cluster size subbarrel 2 layer 0


Cluster size subbarrel 3 layer 01
Cluster size subbarrel 3 layer 0


Cluster size subbarrel 4 layer 01
Cluster size subbarrel 4 layer 0


Occupancy simulation
Occupancy Simulation

  • 2 Scenario :

    • 20 um pixels, samegeometry + B-Field effect, layer 0-5

    • 25 um pixels, layer back by 4mm in r + B-fieldeffects layer 0-5

  • In both scenario weneed to addhadronic components, disks


Lorentz angle
Lorentz angle

  • Lorentz angle depends on mobilitywhichdepends on Electric field and eventually on dopant concentration

  • In a 50um 10kOhmcm p-type wafer, 10V bias, E≈[1600,2700]V/cm

    • Varywithresistivity, bias voltage

  • In a planarsensor, E isproportional to V applied

    • V appliedisproportional to thickness2 (Full depletion voltage)

    • For thinsensor, at full depletion voltage, Electric fieldisverylow

    • To beinvestigated : How much over Full depletioncanweapply voltage

mini workshop on engineering aspects of the CLIC vertex detectors


Lorentz angle effects in digitization
Lorentz angle effects in Digitization

  • I have added as an option in the digitizer to takintoaccount the Magneticfield in the motion equation of the charge in the sensor.

    • The Lorentz angle iscalculatedateachintegrationsteptakingintoaccount :

      • Local mobility and electricfield

      • Hall Scattering factor


Lorentz angle effects 0 degrees incidence b 4t
Lorentz angle effects (0 degrees incidence, B=4T)


Lorentz angle effects 75 degrees incidence b 4t
Lorentz angle effects (75 degrees incidence, B=4T)


Lorentz angle effects 0 degrees incidence b 4t tilted by lorentz angle
Lorentz angle effects (0 degrees incidence, B=4T), tilted by Lorentz angle


Lorentz angle effects 0 degrees incidence b 4t tilted by lorentz angle1
Lorentz angle effects (0 degrees incidence, B=4T), tilted by Lorentz angle


Lorentz angle effects cluster size
Lorentz angle effects (Cluster Size)

!!

Lorentz angle increases cluster size (in average) -> Increaseoccupancy


Desy data with low energy 2 4 gev electrons
DESY data withlowenergy (2-4 GeV) electrons

  • Wewereallowed to join ATLAS DBM testbeamat DESY to acquiresome data withTimepixusinglowenergyelectrons (2-4 GeV) (No Tracking)

    • 6M Frames at 100V 0 deg

    • 5K Frames at 0,25,50,75 deg

    • 5k Frames at 0deg, 5V, 10V, 50V

    • 5k Frames atIkrum 25,50,100

  • In average 500 clusters per frame

  • ToT mode


Some desy plots cluster size
Some DESY plots (cluster size)


Some desy plots cluster size1
Some DESY plots (cluster size)


Conclusion
Conclusion

  • Detailed simulation of inner layer for CLIC_ILD new design show higheroccupanciesthan CDR numbers :

    • Layer is 4 mm closerthanbefore -> Higheroccupancy

    • Phi dependenceobserved in the end-of-stave chips

    • Next simulation to beperfomedwith B-Field effectsincluded, larger pixels

  • Lorentz angle effects have been encoded in the digitizer

    • Debuggedusing the new event display feature of the digitizer

    • Ready for use in occupanciesstudies


ad