1 / 44

New Results on Charmonium and Charmonium(-like) States from Belle

New Results on Charmonium and Charmonium(-like) States from Belle. Jens Sören Lange Justus-Liebig-Universität Gießen hadron2011 XIV International Conference on Hadron Spectroscopy 06/16/2011 Künstlerhaus, München .

fauna
Download Presentation

New Results on Charmonium and Charmonium(-like) States from Belle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New Results onCharmonium and Charmonium(-like) Statesfrom Belle Jens Sören LangeJustus-Liebig-Universität Gießen hadron2011XIV International Conference on Hadron Spectroscopy 06/16/2011Künstlerhaus, München

  2. Are the Charmonium(-like) States („XYZ“) Charmonium States, or not?(see plenary talks by De Fazio, Eidelman, Gao, Springer, Patriagni, and several parallel talks) Here: charmonium mass region only

  3. Is the Charmonium Potential Modelappropriate for explaining XYZ states? S > 1 at large radiusnon-perturbative? string breaking regimestill bound state? confinement(scalar ?) QCD vacuum is 3P0(„Lamb shift“ of c0 ?) 2-gluon exchange? 3 gluon vertex in hadronic decays? molecular potential? [cc]8 + gluon hybrid?(color octet) asymptotic free?(why annihilation branching so high?) contact term (spin-spin)

  4. Outline • c and c´ • mass • width • X(3872) • mass • width • quantum numbers • c2 production in B decays

  5. c andc´

  6. c • Ground state of CharmoniumJPC=0−+, 11S0 • Observed e.g. in J/ and ´radiative decays, but cross section varies according to Ea, a=3…7→ modifies lineshape→ width determination non-trivial(new Bes-III result shownat this conference) • In  → c and B decays: Breit-Wigner line shape is appropriate approximation Belle, 395/fb Eur. Phys. J. C53(2008)1 BaBar, 469/fbPhys. Rev. D81(2010)052010 c c0 c2 J/ c

  7. LEES et al., BaBar, Phys. Rev. D81(2010)052010 PDG2010 Width Mass ' 15 MeV in J/ and ´radiative decays ' 30 MeV in B decays and 

  8. arXiv: 1105.0978 submitted to PLB New mass and width measurement for c in B decays 2-dim fit of angle(K+ KS) vs. M(KSK  ) M = 2985.4 ± 1.5 −2.0+0.2 MeV  = 35.1 ± 3.1 −1.6+1.0 MeV B+ K+c, c KS K±¨ non-resonantcharmlessB decays Agreement with BaBar resultin  c Agreement with Bes-III resultin ´  cshown at this conference

  9. c(2S) 1st radial excited stateJPC=0−+, 21S0

  10. arXiv: 1105.0978 submitted to PLB New mass and width measurement of c(2S) in B decays Interference of signal and non-resonant background important fit with interference  = 6.6−5.1+8.4(stat.+model)−0.9+2.6(syst.) MeV fit w/o interference  = 41.1± 12.0(stat.)−10.9+6.4(syst.) MeV B+ K+c(2S), c(2S) KS K±¨ ´

  11. c(2S) Error on widthimproved by factor ' 2 New Belle measurement Mass 3636.1−4.1+3.9(stat.+model)−2.0+0.5(syst.) MeV Width 6.6−5.1+8.4(stat.+model)−0.9+2.6(syst.) MeV

  12. c(1S) c(2S) Hadronic width of c(2S) must be smaller than c(1S) Potential model for c(2S)width prediction not reliable, because close toDD threshold  would be nice test for Lattice QCD 3 gluon decay not possible(parity)

  13. New results on X(3872) fulldata set 711/fb on Y(4S) re-processed data(improved low momentum tracking,reconstruction efficiency in some channels ¸20% increased)

  14. B+ MBC /GeV M(J/+− )/GeV E/GeV B0 MBC /GeV M(J/+− )/GeV E/GeV Reference Analysis: BK´, ´  J/+− Preliminary Preliminary 3-dim fit in beam constrained mass, J/+− mass and E at first, fit reference signal ´ fix core Gaussian and tail Gaussian for resolution parameters

  15. Analysis of X(3872)  J/ +− Preliminary B+ 151§15 events MBC /GeV M(J/+− )/GeV E/GeV B0 21.0§5.7 events MBC /GeV M(J/+− )/GeV E/GeV 3-dim fit with fixed resolution parameters from ´ Mass MC/data shift +0.92§0.06 MeV, measured and fixed from ´ mass

  16. X(3872) mass in p+p-J/ychannel only Belle result contains MC/data shift 0.92 § 0.006 MeV, fixed from reference channel ´ <MX>prev_WA= 3871.46 ± 0.19 MeV Here former Belle measurement3872.0 ± 0.6 ± 0.5 MeVnot considered anymore(superseded by new measurement) “Binding Energy”m(X)−m(D*0)−m(D0) becomes smaller: Old: m = −0.32 ± 0.35 MeV New: m = −0.17 ± 0.36 MeV Preliminary New w/ LHCb: m = −0.12 ± 0.35 MeV Reminder: m(deuteron) = −2.2 MeV

  17. New measurement of width of X(3872) • Previous best limitX(3872) < 2.3 MeV (90% CL) • 3-dim fits are sensitive to natural widths narrower than resolution <>'4 MeVbecause of constraints (mBC, E) • Method validated with ´width´=0.52§0.11 MeV (PDG 0.304§0.009 MeV) bias 0.23 § 0.11 MeV • procedure for upper limit:width in 3-dim fit fixednsignal and npeaking BG floating calculate likelihood • X(3872) < 0.95 MeV + bias MC (output) / MeV (input) / MeV 90% 1.2 MeV

  18. X(3872) possible Charmonium Assignment • 1++ c1´ 3P1predicted mass 3953 MeVn=2favoured by angular analysisCDF-II, PRL98(2007)132002 Belle, hep-ex/0505037 • 2−+c21D2predicted mass 3837 MeVn=1(would be a L=2 meson)favoured by X(3872)  J/  analysis BaBar, Phys. Rev. D82(2010)011101 1++ / fm−3/2 2−+ r / fm Mass predictions by Barnes, Godfrey, SwansonPhys. Rev. D72(2005)054026

  19. Angular Variables • Assume X(3872)  J/in kinematic limit:both particles at rest in X(3872) rest frame mX' m+mJ/ higher partial waves can be neglected • 1++1 amplitude L=0, S=1 • 2−+2 amplitudesL=1, S=1 or S=2 J. Rosner PRD 70(2004)092023 only normalizationfloating in fit normalization and  (complex)floating in the fit

  20. Angular Variables X X(3872) rest frame

  21. 1++ Hypothesis vs. 2−+ Hypothesis =0.69 e23° i, only value which gives >10% CL in all three plots c2/dof =1.76/4 CL=0.78 c2/dof =4.60/4 CL=0.33 | cos | | cos | c2/dof =0.56/4 CL=0.97 c2/dof =5.24/4 CL=0.26 | cos lep| | cos lep| c2/dof =3.82/4 CL=0.51 c2/dof =4.72/4 CL=0.32 | cos X| | cos X|

  22. c2 in B Decays

  23. Control signal for X(3872)  J/, Belle, arXiv:1105.0177 [hep-ex], subm. PRL B§K§c1,2 with c1,2→ J/  First Evidence for B§!c2 K§ B+ c2 c1 B+→ K+c232.8+10.9−10.2 events3.6 (stat. and syst.) B0 → K0c22.8+4.7−3.9 events0.7 (stat. and syst.) B0 c2 c1 L=1

  24. Same Analysis, but reference signal c1,2→ J/ First Evidence for B§!c2 K§ B+ c2 c1 Production of J=2, Parity=+ Charmonium in B Meson Decays0−! 0− 2+ B+→ K+c232.8+10.9−10.2 events3.6 (stat. and syst.) B0 → K0c22.8+4.7−3.9 events0.7 (stat. and syst.) B0 c2 c1

  25. Radiative Transition from c1,2 to J/ • Photon energies of transitionscomparable (E' 414 MeV ' 459 MeV)but dynamics different • Lattice QCDDudek, Edwards, ThomasPhys. Rev. D79(2009)094504( c1! J/ ) = 270(70) keV ( c2! J/ ) = 380(50) keV Transistion Formfactors E1 E1 E3 M2 M2

  26. B§K§c2 Jq=½ Jq=½ Jq=½ JW=1 Vector oraxial-vector J=0 or J=1 preferred Parity + or parity − allowed JP=1+ possible (e.g. B+! K+c1BR 4.6§0.4 x 10−4) but J=2 difficult to be generated forbidden in naïve factorization additional soft gluon requiredBauer, Stech, WirbelZ. Phys. C34(1987)103

  27. Summary • New measurement of c´width in B decays (undistorted lineshape) • New measurements of X(3872), full data set, re-processed data • New world average mass of X(3872) moves closer to DD* thresholdm=−0.12±0.35 MeV (but still negative) • X(3872) never seen in radiative decays (e.g. (4040))  mass measurement by Bes-III could provide important cross-check with independant method • New upper limit on X(3872) < 1.2 MeVfactor 2 narrower than before • further improvement  <1 MeV feasiblebut only way to reach ·100 keV cooled antiproton beam PANDA experiment >2017 More Belle Results: XYZ States, Simon Eidelman(plenary, Thursday morning) Bottomonium, Alex Kuzmin(parallel, Tuesday afternoon)Belle-II, Boris Shwartz(plenary, Friday afternoon)

  28. Backup

  29. Charmonium Excited States n · 3, L · 4 Barnes, Godfrey, Swanson, Phys. Rev. D72(2005)054026 n2S+1 L J Terra Nova Mass / GeV JPC

  30. B Factories

  31. ~952 /fbOn-resonance samples:Y(4S): 711 /fbY(5S): 121 /fbY(3S): 3.0 /fbY(2S): 24 /fbY(1S): 5.7 /fbOff-resonance: 87 /fb ~553 /fb On-resonance samples: Y(4S): 433 /fb Y(3S): 30 /fb Y(2S): 14 /fb Off-resonance: 54 /fb

  32. Production of Charmonium Double CharmoniumProduction B Decays in 2-body B decays, JPC=0− +, 1− −, 1++ in factorization limit C=+1 Initial State Radiation JPC=0++,0−+, 2++ JPC=1− − 

  33. Decays of Charmonium States 1- Annihilation EM e.g. J/!+-0 OZI suppressed J=0,1,2 Do(*) Strong ~1/S2 Do(*) Strong Strong spectatorisospin transition ?(if ()=) ~1/S2 e.g.  ´! J/+- EM radiative L=1 e.g. /!cJ

  34. Braaten, Kusunoki, Phys. Rev. D71(2005)074005

  35. B+ vs. B0 decays: mixing angle • Diquark – anti-diquark modelMaiani, Piccinini, PolosaPhys. Rev. D71(2005)014028 • Mixing occurs by gluon annihilationuu  gluon  dd • Xu (Xd) populates B+ (B0) decay

  36. Helicity amplitudes for X  J/D are Wigner functions

  37. B+ and B0 decays are quite different. Swanson, Phys. Rept. 429(2006)243 B+ = BuB0 = Bd B+! K+B0! K0(charge sign changes by W§,and changes back, ! same charge for B and K) color suppressed(color is locked by spectator quark) B0! K+ B0! K0 B+! K+ B+! K0 any combination possible color enhanced

  38. PRELIMINARY X(3872) in B+ vs. B0 decays BaBar (2.7 ± 1.6 ±0.4) MeV B(B+K+ X(3872)) x B(X(3872)  J/+−)) = (8.61±0.82±0.78) x 10−6 B(B0K0 X(3872)) x B(X(3872)  J/+−)) = (4.3±1.2±0.4) x 10−6 BaBar 0.41±0.24±0.05 for molecule expected R(X) ' 1 Braaten, Kusunoki, Phys. Rev. D71(2005)074005 Small mass difference disfavours Diquark-Antidiquark Model Maiani, Piccinini, PolosaPhys. Rev. D71(2005)014028

  39. c fit function

  40. c fit function

  41. X(3872) mass measurement syst. errors Width is upper limit  no syst. error to be given.

More Related