D. L. McAuslan, D. Korystov, and J. J. Longdell
Download
1 / 22

D. L. McAuslan, D. Korystov, and J. J. Longdell - PowerPoint PPT Presentation


  • 49 Views
  • Uploaded on

D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. David McAuslan – QIP-REIDS2011. Coherent Spectroscopy of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators. David McAuslan – QIP-REIDS2011.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' D. L. McAuslan, D. Korystov, and J. J. Longdell' - farsiris-hormuzd


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

D. L. McAuslan, D. Korystov, and J. J. Longdell

Jack Dodd Centre for Photonics and Ultra-Cold Atoms,

University of Otago, Dunedin, New Zealand.

David McAuslan – QIP-REIDS2011

Coherent Spectroscopy of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators

David McAuslan – QIP-REIDS2011


Whispering Gallery Modes (WGMs).

Strong Coupling Regime of Cavity QED.

Experiments.

Atom-Cavity Coupling.

Coherence Time.

Population Lifetime.

Spectral Hole Lifetime.

Optical Bistability/Normal-Mode Splitting.

David McAuslan – QIP-REIDS2011

Outline

David McAuslan – QIP-REIDS2011


Electric field confined to equator.

High quality factor.

Small mode volume.

Ideal for strong coupling cavity QED.

David McAuslan – QIP-REIDS2011

Whispering Gallery Modes

[1]

[1] S. Arnold et al., Opt. Lett. 28 (2003).

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011

Whispering Gallery Modes

[1]

[4]

[3]

[2]

[2]

[3]

[1] T. J. Kippenberg, PhD. Thesis (2004).

[2] A. Schliesser et al., Nature Physics 4 (2008).

[3] Y. Park et al., Nano Lett. 6 (2006).

[4] J. Hofer et al., PRA 82 (2010).

David McAuslan – QIP-REIDS2011


κ – cavity decay rate:

γ – atomic population decay

rate:

γh– atomic phase decay rate:

g – coupling between atoms and cavity:

David McAuslan – QIP-REIDS2011

Strong Coupling Regime

David McAuslan – QIP-REIDS2011


Critical atom number:

Saturation photon number:

N0<1, n0<1.

“Good cavity” strong coupling regime: g > κ, γ, γh.

“Bad cavity” strong coupling regime: κ > g >> γ, γh.

David McAuslan – QIP-REIDS2011

Strong Coupling Regime

David McAuslan – QIP-REIDS2011


Reversible State Transfer

Single Atom Detection

David McAuslan – QIP-REIDS2011

Why Strong Coupling?

D. L. McAuslan et al., Physical Review A 80, 062307 (2009)

David McAuslan – QIP-REIDS2011


Measure the properties of a Pr3+:Y2SiO5 resonator.

Atom-cavity coupling.

Coherence time.

Population lifetime.

Spectral hole lifetime.

Calculate cavity QED parameters to determine viability of strong-coupling regime.

David McAuslan – QIP-REIDS2011

Aim of Experiments

David McAuslan – QIP-REIDS2011


Resonator:

0.05% Pr3+:Y2SiO5.

r = 1.95mm.

Q = 2 x 106.

Sample:

0.02% Pr3+:Y2SiO5.

5x5x5mm cube.

David McAuslan – QIP-REIDS2011

Experimental Setup

LO

Probe

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011

πPulse Length

π = 0.32μs for

Pin = 700μW

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


Rabi frequency:

Atom-Cavity Coupling:

Compare to g calculated from the theoretical mode volume (V = 5.40 x 10-13 m3 for r = 1.95mm):

David McAuslan – QIP-REIDS2011

Atom-Cavity Coupling

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011

Coherence Time

  • Through Resonator

  • Coupled into Resonator

e-2τ/T2

e-2τ/T2

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011

Coherence Time

  • Through Resonator

  • Coupled into Resonator

e-2τ/T2

e-2τ/T2

T2 = 30.8 μs

T2 = 21.0 μs

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


Through Resonator

Coupled into Resonator

David McAuslan – QIP-REIDS2011

Population Lifetime

e-Τ/T1

e-Τ/T1

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


Through Resonator

Coupled into Resonator

David McAuslan – QIP-REIDS2011

Population Lifetime

e-Τ/T1

e-Τ/T1

T1 = 205μs

T1 = 187μs

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011

Spectral Hole Lifetime

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

David McAuslan – QIP-REIDS2011


Optical bistability and normal-mode splitting studied by Ichimura and Goto in a Pr3+:Y2SiO5 Fabry-Perot resonator [1].

Theory modified for a WGM resonator.

Fitting to experimental data gives:

g = 2πx 2.2 kHz.

David McAuslan – QIP-REIDS2011

Optical Bistability

800μW

400μW

Sweep

Sweep

200μW

100μW

80μW

40μW

[1] K. Ichimura and H. Goto, PRA 74 (2006)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011 Ichimura and Goto in a

Cavity QED Parameters

  • This resonator:

    • κ = 2π x 138 MHz.

    • γ = 2π x 0.851 kHz.

    • γh= 2π x 2.34 kHz.

    • g = 2π x 1.73 kHz.

    • N0 = 2.15 x 105, n0 =0.166.

  • Need:

    • Smaller resonators.

    • Higher Q factors.

    • Different materials.

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011 Ichimura and Goto in a

Smaller V

  • Single point diamond turning.

    • Crystalline resonators with R = 40 μm.

    • Possible to reduce V by 3 orders of magnitude.

[1]

[1] I. S. Grudinin et al., Opt. Commun. 265 (2006)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011 Ichimura and Goto in a

Higher Q

  • We have measured Q = 2 x 108 in Y2SiO5 resonators.

  • Q = 3 x 1011 in CaF2 [1].

  • Bulk losses in Y2SiO5 measured using Fabry-Perot cavity [2].

    • α≤ 7 x 10-4 cm-1.

    • Max Q ~ 3 x 108.

  • At least 2 orders of magnitude improvement possible.

  • Bulk losses should be lower in IR.

[1] A. A. Savchenkov et al., Opt Exp. 15 (2007)

[2] H. Goto et al., Opt. Exp. 18 (2010)

David McAuslan – QIP-REIDS2011


David McAuslan – QIP-REIDS2011 Ichimura and Goto in a

Materials

  • N0<1 for different materials.

David McAuslan – QIP-REIDS2011


Performed an investigation into strong coupling cavity QED with rare-earth-ion doped WGM resonators.

Direct measurement of cavity QED parameters of a Pr3+:Y2SiO5 WGM resonator.

g = 2π x 1.73 kHz.

γ= 2π x 0.851 kHz.

γh= 2π x 2.34 kHz.

Observed optical bistability and normal-mode splitting in resonator.

Achieving the strong coupling regime of cavity QED is feasible based on existing resonator technology.

David McAuslan – QIP-REIDS2011

Conclusions


ad