slide1
Download
Skip this Video
Download Presentation
Exponential Functions

Loading in 2 Seconds...

play fullscreen
1 / 18

Exponential Functions - PowerPoint PPT Presentation


  • 131 Views
  • Uploaded on

Exponential Functions. Lesson Objective: Draw graphs of exponential functions of the form y = ka x   and understand ideas of exponential growth and decay. Starter. Suppose you have a choice of two different jobs at graduation Start at £20,000 with a 6% per year increase

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Exponential Functions' - fallon-cooke


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Exponential Functions

Lesson Objective:

Draw graphs of exponential functions of the form y = kax  and understand ideas of exponential growth and decay

starter
Starter
  • Suppose you have a choice of two different jobs at graduation
    • Start at £20,000 with a 6% per year increase
    • Start at £24,000 with £1000 per year raise
  • Which should you choose?
    • One is linear growth
    • One is exponential growth
which job
Which Job?
  • How do we get each nextvalue for Option A?
  • When is Option A better?
  • When is Option B better?
  • Rate of increase a constant £1000
  • Rate of increase changing
    • Percent of increase is a constant
    • Ratio of successive years is 1.06
general formula
General Formula
  • All exponential functions have the general format:

y = kax

Where

    • k = initial value
    • a = growth factor (a>1) or decay factor (0<a<1)
    • x = number of time periods

Option A y = 20000x1.06x

Option A y = 24000+1000x  

exponential functions
Exponential functions

y = 2x

y = 5x

y = 0.1x

y = 0.5x

y = 7x

In an exponential function, the variable is in the index. For example:

The general form of an exponential function to the base a is:

y = axwhere a > 0 and a≠1.

You have probably heard of exponential increase and decrease or exponential growth and decay.

A quantity that changes exponentially either increases or decreases increasingly rapidly as time goes on.

slide6

8

7

6

5

4

3

2

1

-7

-2

-1

1

3

5

7

-6

-5

-4

-3

-2

-3

-4

-5

0

4

6

8

-6

-7

2

Let’s examine exponential functions. They are different than any of the other types of functions we’ve studied because the independent variable is in the exponent.

Let’s look at the graph of this function by plotting some points.

x 2x

38

2 4

BASE

1 2

0 1

Recall what a negative exponent means:

-1 1/2

-2 1/4

-3 1/8

slide7

Reflected about y-axis

This equation could be rewritten in a different form:

So if the base of our exponential function is between 0 and 1 (which will be a fraction), the graph will be decreasing. It will have the same domain, range, intercepts, and asymptote.

There are many occurrences in nature that can be modeled with an exponential function. To model these we need to learn about a special base.

slide8

When 0 < a < 1 the graph of

y = ax has the following shape:

y

(1, a)

(1, a)

x

When b > 1 the graph of y = ax has the following shape:

y

1

1

x

In both cases the graph passes through (0, 1) and (1, a).

This is because:

a0 = 1 and a1 = a

for all a > 0.

general formula1
General Formula
  • All exponential functions have the general format:

y = kax

Where

    • k = initial value
    • a = growth factor (a>1) or decay factor (0<a<1)
    • x = number of time periods
slide11

The value of a new car depreciates at a rate of 15% a year.

The car costs £24 000 in 2010.

How much will it be worth in 2018?

To decrease the value by 18% we multiply it by 0.82.

There are 8 years between 2010 and 2018.

After 8 years the value of the car will be

£24 000 × 0.828 =

£4905 (to the nearest pound)

y = 24000x0.82x

exponential modeling
Exponential Modeling
  • Population growth often modeled by exponential function
  • Half life of radioactive materials modeled by exponential function
decreasing exponentials
Decreasing Exponentials
  • Consider a medication
    • Patient takes 100 mg
    • Once it is taken, body filters medication out over period of time
    • Suppose it removes 15% of what is present in the blood stream every hour

Fill in the rest of the table

What is the decay factor?

decreasing exponentials1
Decreasing Exponentials
  • Completed chart
  • Graph

Growth Factor = 0.85

Note: when growth factor < 1, exponential is a decreasing function

slide15

Each year the local country club sponsors a tennis tournament.  Play starts with 128 participants.  During each round, half of the players are eliminated.  How many players remain after 5 rounds?

slide16

Why study exponential functions?

Population growth

Banking and finance

Compute compound interest

Whenever quantities grow or shrink by a constant factor, such as in radioactive decay,   Depreciation

Medicine provides another common situation where exponential functions give an appropriate model.  If you take some medicine, the amount of the drug in your system generally decreases over time.

An understanding of exponential functions will aid you in analyzing data particularly in growth and decay

general formula2
General Formula
  • All exponential functions have the general format:

y = kax

Where

    • k = initial value
    • a = growth factor (a>1) or decay factor (0<a<1)
    • x = number of time periods
ad