1 / 35

Electrostatics numerical integration

Electrostatics numerical integration. Electrostatics. +Q. +Q. +Q. - Q. electric field. r. y. r. y. . x. x. . . symmetry. r. y. . x. . . z. r. y. x. Gauss's law. infinite charged sheet. Voltage -- work. Voltage – work Superposition. numerical integration. y.

eunice
Download Presentation

Electrostatics numerical integration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electrostatics numerical integration

  2. Electrostatics +Q +Q +Q - Q

  3. electric field

  4. r y r y  x x   symmetry

  5. r y  x  

  6. z r y x Gauss's law

  7. infinite charged sheet

  8. Voltage -- work

  9. Voltage – work Superposition

  10. numerical integration

  11. y b x + Dz z a

  12. y b x + Dz z a

  13. j = 3 y b j = 2 x j = 1 Rj,k k = 1 + k = 2 Dz z k = 3 a

  14. j 1 2 3 n-1 n 1 2 3 b k m-1 m a

  15. j = 3 y b j = 2 x j = 1 Rj,k k = 1 + k = 2 Dz z k = 3 a

  16. y b x + z a

  17. 5 13 6 8 4 3 12

  18. y b x + z a

  19. y b x A + dz z a

  20. clear; clf n=3; a=12; m=3; b=16; dz=12; V=0; for j=1: n-1 for k=1: m-1 A=[dz ((n/2)-j)*(a/(n-1)) ((m/2)-k)*(b/(m-1))]; R=norm(A); V=V+1/R; end end V V = .3077 = 4/13

  21. plot the result of the previous calculation

  22. clear n=3; a=12; m=3; b=16; dz=12; V=0; for j=1: n-1 for k=1: m-1 A=[dz ((n/2)-j)*(a/(n-1)) ((m/2)-k)*(b/(m-1))]; R=norm(A); V=V+1/R; end end V V = .3077 = 4/13 #1

  23. for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on end end xlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black') #1

  24. clear n=3; a=12; m=3; b=16; dz=12; V=0; for j=1: n-1 for k=1: m-1 A=[dz ((n/2)-j)*(a/(n-1)) ((m/2)-k)*(b/(m-1))]; R=norm(A); V=V+1/R; end end V V = .3077 = 4/13 #1 #2 ;

  25. for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on end end xlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black') #1 #2

  26. for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on end end xlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black')

  27. slope = -1

  28. Electric field normal to a surface • Two regions – • The first region is very close to the surface so the surface almost appears to be infinite in extent. • The second is at distances that are large with respect to the dimensions of the surface and the surface appears to be a point charge.

  29. quadrature function ”quad” • the function “quad” approximates the integral of a function from a to b with an error of 10- 6 using “recursive adaptive Simpson quadrature.” • This also holds true for “dblquad” & “triplequad.”

  30. % electric field at different distances clear;clf for z= 1: 100 f=inline('10*z./(sqrt(x.^2+y.^2+(z/10).^2).^3)'); coefficient(z) =dblquad(f, -.5, .5, -.5, .5, [ ],'',z); end loglog(1: 100, coefficient,'-s') hold on plot([10/(10^(1/2)) 100], [1000 1],'--','linewidth', 3) xlabel ('z/a','fontsize', 18) ylabel ('coefficient','fontsize', 18) set(gca,'fontsize', 18) grid on legend ('numerical integration','slope = -2', 3)

  31. Comparison of the two integration techniques

  32. 12 y V(z = 6) = ? Find V(z) 12 12 x 6 z

  33. 6 6 12 y V(z = 6) = ? Find V(z) 6 x z

More Related