1 / 12

授課老師 : 陳文山 學生 : 陳瑞傑

- 微波電路期末報告 -. 題目 : 雙波段可調磁體實現由 接地的鐵素體覆蓋金屬光柵. Double-Band Tunable Magnetic Conductor Realized by a Grounded Ferrite Slab Covered With Metal Strip Grating. 授課老師 : 陳文山 學生 : 陳瑞傑. Armin Parsa , Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE.

Download Presentation

授課老師 : 陳文山 學生 : 陳瑞傑

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. -微波電路期末報告- 題目: 雙波段可調磁體實現由 接地的鐵素體覆蓋金屬光柵 Double-Band Tunable Magnetic Conductor Realizedby a Grounded Ferrite Slab CoveredWith Metal Strip Grating 授課老師:陳文山 學生:陳瑞傑 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,231-233

  2. 目錄 • 摘要 • GFS-MSG結構與原理 • 設計與試驗 • 結論

  3. 摘要 • 一個完美磁導體邊界(或PMC為的縮寫)是一個表面,而不是現成的性質,對其中總切向磁場消失和反映切向電場階段與整個切向電場。兩個已經實施採用人為磁帶隙結構並發現應用在天線和微波元件,如高增益低狀態的平面天線和橫向電磁(TEM)波導。基於可調磁導體邊界,根據接地鐵氧體板已經提出研究。這PMC是完全均勻的,而相比之下,電磁帶隙結構,是高度不均勻的共振週期結構。(PMC)在一個特定的頻率,由於法拉第旋轉最高接近鐵磁諧振頻率,工作頻率通常選擇關閉共振,以便薄板鐵素體。然而,這這個問題帶來了損失,因為一個鐵氧體吸收峰恰逢其共鳴。覆蓋一個金屬光柵,相應頻率波段90法拉第旋轉另一頻率波段低損失和低頻對應45法拉第旋轉。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,231

  4. GFS-MSG結構與原理 圖1.建議完美磁導體接地的鐵素體板實現覆蓋著金屬光柵(GFS-MSG PMC). 無限x與y方向。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,231

  5. 2.工作原理建議(GFS-MSGPMC),如圖1,其中已省略清晰。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,231

  6. 圖3-虛部的滲透率(磁損耗)和法拉第旋轉角與頻率無界鐵素體(YIG器件)中帶參數:4 πMs=0.188T, ε r=15, △ H=10Oe 與 μ0H0=0.2T(內部偏置場)和鐵磁諧振,ω0=γμ0H0=2π× 5.6 ×109rad/s , γ = 1.76× 1011rad/(T . s)是旋磁比鐵素體。法拉第旋轉波計算距離3.04 mm(相當於厚度鐵氧體的磁子9CHV板厚度,用於在後面的實驗裝置)。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,232

  7. 設計與試驗 圖4-反射場元件的電場鐵氧體,接口為極化入射場計算方法由GSM並與HFSS軟件FEM的結果為鐵素體板的厚度毫米(相當於法拉第距離圖-3)。 (GFS-MSG)(a)相對振幅(優化在5.2GHz)[3]。(b)相對相一。(c)相對振幅(GFS-MSG)。(d)相對相位(GFS-MSG )。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,233

  8. 圖5-(a)實驗證明了概念的原型。 (坐標系統一致認為是圖1)(b)實驗的設置,其中波導兩極之間放置一個電磁鐵。截止波導(a = 15 mm 和 B = 13 mm)無磁導體是由10GHz。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,233

  9. 圖6-實驗結果(S21)為波導圖。圖5-之間放置兩極電磁鐵外部直流偏壓下的0.318T。 GFS-MSG波導通帶周圍的預期瞬變電磁頻率3.5GHz。該實驗的鐵氧體加載波導也沒有顯示進行比較。 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,233

  10. 圖7-測量結果顯示了波導可調的透射電鏡與偏場μ0H0圖7-測量結果顯示了波導可調的透射電鏡與偏場μ0H0 Armin Parsa, Member, IEEE, Attieh Shahvarpour, Student Member, IEEE, and Christophe Caloz, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 5, MAY 2011,233

  11. 結論 • 鐵素體的接地金屬光柵覆蓋(GFS-MSG)已經提出以雙帶磁性導體(PMC)的基礎上,法拉第旋轉效應在鐵素體。除了工作頻率對應的90℃法拉第旋轉,(GFS-MSG)樣品另一個相應降低操作頻率為45℃法拉第旋轉。後者表現出較低的功耗,由於其較高的距離共鳴。這一概念已被證明在一個 PMC實驗側壁透射電鏡波導。

  12. 心得 • 對於試驗可調性GFS-MSG雙波長,鐵素體接地金屬光柵,以提出研究討論。 • 雖然對於這篇還是有很多不懂的地方,希望用課外的時間來慢慢理解加強,感謝陳文山教授的指導。

More Related