PXI-Based Magnetic Imaging System for Diagnosing Infant Brain Activity - PowerPoint PPT Presentation

Pxi based magnetic imaging system for diagnosing infant brain activity l.jpg
Download
1 / 96

PXI-Based Magnetic Imaging System for Diagnosing Infant Brain Activity. Tristan Technologies, Inc., San Diego, CA. babySQUID ® Neonatal Biomagnetometer. S uperconducting QU antum I nterference D evice. Competing Methodologies. Adult Magnetoencephalography (MEG)

Related searches for PXI-Based Magnetic Imaging System for Diagnosing Infant Brain Activity

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

Download Presentation

PXI-Based Magnetic Imaging System for Diagnosing Infant Brain Activity

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Pxi based magnetic imaging system for diagnosing infant brain activity l.jpg

PXI-Based Magnetic Imaging System for Diagnosing Infant Brain Activity

Tristan Technologies, Inc., San Diego, CA


Babysquid neonatal biomagnetometer l.jpg

babySQUID® Neonatal Biomagnetometer

Superconducting

QUantum

Interference

Device


Competing methodologies l.jpg

Competing Methodologies

  • Adult Magnetoencephalography (MEG)

    • Multi-million dollar systems requiring

      large magnetically shielded rooms

    • Poorer spatial resolution

  • fMRI

    • Not truly “functional”

    • Poor time resolution

    • Requires infants to be sedated

    • Contrast agents often needed

  • PET

    • Requires administration of radioisotopes

      may not be possible with infants

    • Poor time resolution

  • EEG

    • Lack of unique source location

    • Electrodes must be placed on skull (time consuming)


Slide4 l.jpg

A new way to evaluate neurological impairments of infants by magnetic mapping

  • 100% non-invasive MEG

    (MagnetoEncephaloGraphy)

  • Directly measures neural activity

  • Portable – goes from hospital elevator to bedside

  • Needs NO shielded room


Data acquisition system l.jpg

Data Acquisition System

  • 24 bit resolution

  • 10 kSample/sec sampling rate, simultaneous

  • 88 data channels, expandable

  • Both hardware and software buffered

  • Fiber optic data link

  • Multi-PXI configuration currently being developed


Slide6 l.jpg

babySQUID® User Interface


Babysquid user interface l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Babysquid user interface8 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Slide9 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide10 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide11 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide12 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide13 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide14 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide15 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide16 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide17 l.jpg

RealTime

Head

Tracking

Zoom

Pan

Rotate


Slide18 l.jpg

Simulated Field

Projected onto

Skin Surface


Slide19 l.jpg

Simulated Field

Projected onto

Skin Surface


Slide20 l.jpg

Simulated Field

Projected onto

Skin Surface


Slide21 l.jpg

Simulated Field

Projected onto

Skin Surface


Babysquid user interface22 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Babysquid user interface23 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Slide24 l.jpg

Averaged

Data

Incoming

Data


Slide25 l.jpg

Averaged

Data

Incoming

Data


Slide26 l.jpg

Averaged

Data

Incoming

Data


Slide27 l.jpg

Averaged

Data

Incoming

Data


Slide28 l.jpg

Averaged

Data

Incoming

Data


Slide29 l.jpg

Averaged

Data

Incoming

Data


Slide30 l.jpg

Averaged

Data

Incoming

Data


Slide31 l.jpg

Averaged

Data

Incoming

Data


Slide32 l.jpg

Averaged

Data

Incoming

Data


Slide33 l.jpg

Averaged

Data

Incoming

Data


Slide34 l.jpg

Averaged

Data

Incoming

Data


Slide35 l.jpg

Averaged

Data

Incoming

Data


Babysquid user interface36 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Babysquid user interface37 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Slide38 l.jpg

  • Live

  • PlayBack

  • Simulation

Selectable

Data Source


Slide39 l.jpg

Just turn the knob!


Babysquid user interface40 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Babysquid user interface41 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Slide42 l.jpg

Many

Data

Displays

Sub-panels allow dynamic loading

  • Scope

  • Correlation

  • Intensity

  • Linear

  • Butterfly

  • Time-Freq

  • Surface

  • User-Defined


Babysquid user interface43 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Babysquid user interface44 l.jpg

babySQUID® User Interface

  • Sensor Positioning

  • Incoming Data

    • Live, Playback, & Simulation

    • Filters & Filter editors

    • Monitoring Displays

  • Data Averaging

    • Artifact Rejection

    • Filters & Filter editors

    • Monitoring Displays


Slide45 l.jpg

Multiple

Stackable

Filters

Sub-panels allow dynamic loading

  • FIR/IIR filters

  • Decimation

  • Spectrogram

  • Wavelet

  • Ref. Chan. Corr.

  • User-defined


Reference channel correlation l.jpg

ReferenceChannelCorrelation

Removes

distant

noise

sources


Spectrogram mask l.jpg

SpectrogramMask

Frequency

vs

Time

Threshold

Mask


Spectrogram mask48 l.jpg

SpectrogramMask

Frequency

vs

Time

Threshold

Mask


Spectrogram mask49 l.jpg

SpectrogramMask

Frequency

vs

Time

Threshold

Mask


Spectrogram mask50 l.jpg

SpectrogramMask

Frequency

vs

Time

Threshold

Mask


Spectrogram mask51 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask52 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask53 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask54 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask55 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask56 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Spectrogram mask57 l.jpg

SpectrogramMask

Frequency

vs

Time

Block

Cursor


Wavelets extract hidden signals l.jpg

Wavelets extract hidden signals


Noise analysis l.jpg

NoiseAnalysis


Averaging of repetitive stimulus data l.jpg

Averaging of Repetitive Stimulus Data

  • Incoming data from N trigger channels is compared to a set of Boolean Templates for event detection

  • If a match is found, data in the vicinity of the match is added to an Averaging Bin

  • 10 independent Templates and Averaging Bins are available

  • Artifact Rejection algorithms


Template comparison l.jpg

Template Comparison

Trigger 1 must have

an event in here

Trigger 2 must have

an event in here

Trigger 4 must NOT have

an event in here


Averaged linear display l.jpg

AveragedLinearDisplay


Averaged linear display63 l.jpg

AveragedLinearDisplay


Averaged linear display64 l.jpg

AveragedLinearDisplay


Averaged linear display65 l.jpg

AveragedLinearDisplay


Averaged linear display66 l.jpg

AveragedLinearDisplay


Averaged linear display67 l.jpg

AveragedLinearDisplay


Averaged linear display68 l.jpg

AveragedLinearDisplay


Release dock panels l.jpg

Handy for multiple

monitor hardware!

Release/Dock Panels


Release dock panels70 l.jpg

Handy for multiple

monitor hardware!

Release/Dock Panels


Release dock panels71 l.jpg

Handy for multiple

monitor hardware!

Release/Dock Panels


Release dock panels72 l.jpg

Handy for multiple

monitor hardware!

Release/Dock Panels


Release dock panels73 l.jpg

Handy for multiple

monitor hardware!

Release/Dock Panels


Slide74 l.jpg

Frequency

vs

Time

Gabor

Adaptive

Cone-

Shaped

Choi-

Williams

Wigner-

Ville

STFT


Slide75 l.jpg

Frequency

vs

Time

Gabor

Adaptive

Cone-

Shaped

Choi-

Williams

Wigner-

Ville

STFT


Slide76 l.jpg

Frequency

vs

Time

Gabor

Adaptive

Cone-

Shaped

Choi-

Williams

Wigner-

Ville

STFT


Averaged surface display l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display78 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display79 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display80 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display81 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display82 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display83 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display84 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display85 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display86 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display87 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display88 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display89 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Averaged surface display90 l.jpg

AveragedSurfaceDisplay

Moving time

slice across

channels


Current vector map l.jpg

Current Vectormap

Simulated

Data


Slide92 l.jpg

Signal from 6 mo. Infant in Unshielded Hospital Environment

150 ms

400 fT


Peripheral nerve adult data l.jpg

Forearm stimulated by electrical stimulus at median nerve

Peripheral Nerve – Adult Data

Sensor layout display

Neural signal has moved by 5 cm in 2 msec

(first peak is the stimulus artifact)

Physical location of arm


Slide94 l.jpg

User can adapt software to:

  • Any sensor configuration

  • Any number of sensors

  • Any sensor type (MEG, EEG, etc.) or combination (plus user-defined types)

  • Speeds up to 102 KiloSamples/sec simultaneously


Slide95 l.jpg

  • Additional features

  • Automated system log

  • Compatible with BESA and EMSE

  • Subject and Project databases

  • Available for

    • Unix, Linux, Windows, Mac, RT

  • National languages can be loaded


Slide96 l.jpg

  • Neonatal neurological disorders cost society billions of dollars,

    e.g. cerebral palsy & epilepsy

  • Magnetic measurements are the only way to diagnose infant brain activity, and no shielded room makes it affordable

  • Neurological medication can be directly evaluated

Supported by NIH SBIR Grant # 5 R4 NS038806-04


  • Login