1 / 57

Bericht vom Accelerator Reliability Workshop ARW 2011

A. Denker Reliability gemäß LEO: Ausfallsicherheit Betriebssicherheit Funktionsfähigkeit Verlässlichkeit Zuverlässigkeit . Bericht vom Accelerator Reliability Workshop ARW 2011. Statistik: Übersicht. 1. 2002 ESRF 2. 2009 Triumf 3. 2011 Kapstadt 41 Beiträge von Beschleunigern

edna
Download Presentation

Bericht vom Accelerator Reliability Workshop ARW 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A. Denker Reliability gemäß LEO: Ausfallsicherheit Betriebssicherheit Funktionsfähigkeit Verlässlichkeit Zuverlässigkeit Bericht vomAccelerator Reliability WorkshopARW 2011

  2. Statistik: Übersicht • 1. 2002 ESRF2. 2009 Triumf3. 2011 Kapstadt • 41 Beiträge von Beschleunigern • 78 Teilnehmer, ohne “Locals”: 1/3 Amerika, 1/5 Asien, knapp ½ Europa • 3 Beiträge aus anderen Einrichtungen • Kernkraftwerk Koeberg, • SALT (South African Large Telescope): jwd, Temp.gradienten • South African Square Kilometer Array Project: jwd, möglichst ferngesteuert, da bereits ein Handy stört • Zwei Diskussionsrunden • Magnete • Webseite/Forum

  3. Statistik: wer war da • Lichtquellen:SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF • Spallationsquellen:PSI, SNS • Zyklotrons:allg.: NSCL, iThemba, Uppsala, RIKEN, IBAmed.: MGH, Orsay, HZB, • Sonstige:GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab

  4. Historischer Überblick: Hardy (ESRF)

  5. Ausblick: Hardy (ESRF)

  6. Ansprüche Spallation: PSI

  7. Theorie und Programme: SNS

  8. Theorie <-> echtes Leben

  9. Trend formale Organisation: GSI

  10. Trend formale Organisation: SLAC

  11. Trend formale Organisation: CERN

  12. Trend formale Organisation: BNL

  13. Trend formale Organisation: NSCL

  14. Automatisierung: Australien • Lichtquellen:SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF • Spallationsquellen:PSI, SNS • Zyklotrons:allg.: NSCL, iThemba, Uppsala, RIKEN, IBAmed.: MGH, Orsay, HZB, • Sonstige:GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab

  15. Kontrollsystem: ESRF

  16. e_log: INFN

  17. e_log: http://midas.psi.ch/elog

  18. RF verbessert: RIKEN Ringzyklotron Erreichtdurch • Vakuumverbessert • CW – konditionieren…

  19. RF verbessert: DALINAC Temp.sensor auf RF Regelkarte

  20. Diagnose: DiamondRemotely Controlled, Mobile, Thermal Imaging Platform

  21. fehlende Diagnose: CERN

  22. Wartung auch für Ersatzteile: Spring 8

  23. Probleme durch Kleinigkeiten: SINAP

  24. Probleme durch Kleinigkeiten: CERN

  25. Umfrage: Magnetfehler

  26. Stromausfälle: iThemba

  27. Stromausfälle: Australien

  28. med. Beschleuniger: MGH: >95%

  29. med. Beschleuniger: Orsay

  30. med. Beschleuniger: Siemens, prev. maintenance

  31. med. Beschleuniger: IBA, Field Replaceable Unit

  32. Reliability unter besonderen Umständen

  33. Reliability unter besonderen Umständen uptime: 94%

  34. Zusammenfassung • Erfahrungsberichte aus der Praxis – nicht geschönt • große Unterschiede zwischen den Beschleunigeranwendungen: • die Probleme sind jedoch bei allen ähnlich • intensiver Austausch, sowohl in Podiumsdiskussionen • Lüdeke - zentrale Datenbank für Reliability, andreas.luedeke@psi.ch • Spencer - http://slac.stanford.edu/pubs/slactns/tn04/slac-tn-09-001.pdf als auch mit den Teilnehmern • viele Ideen für zu Hause mitgebracht

  35. History • 1977: start of cyclotron operation for nuclear physics (VICKSI) • 1995 – 2006: Ionenstrahllabor ISL – laboratory for ion beam applications • internal and external (~ 70%) users • ion energy: eV < Eion< 800 MeV • research areas: • materials modification and ion-solid-interaction • materials analysis • medical applications • since 2007: accelerator operation for therapy purposes only

  36. Accelerator Layout 5.5 MV Van-de-Graaff RFQ 2 x 14.5 GHz ECR sources on 150 kV platforms 16 dedicated target stations k = 132

  37. Accelerator Performance cyclotron in operation since 1977 averaged downtime before 1995: 10 % start of therapy start of RFQ operation for users

  38. Reduction of Downtime step by step process addressing all subsystems:sources, injectors, beam lines, cyclotron, control system • preventive maintenance • increased redundancy • modernisation • improved diagnosis • reduction of elements

  39. Preventive Maintenance • regular belt change of Van-de-Graaff • service of rotating parts • cyclic change of spare power supplies used on HV terminal • drying of SF6 gas • cleaning of isolators • service on vacuum pumps: oil, bearings • replacement of water tubes

  40. Modernisation • new computers for control system • replacement of old dipole power supplies • exchange of shunt against transducer regulation in quadrupole power supplies (gain in stability: factor 10) • discrete rectifiers replaced by complete 3-phase modules • replacement of main coil power supply of cyclotronside effect: less energy consumption

  41. Redundancy / Reduction of elements • smaller variety of pumps, vacuum gauges, power supplies…. • whenever possible: spare parts for quick exchange • low intensity proton beams: no pre-bunching • no water cooling of deflector plates in beam line dipoles

  42. Improved Diagnostics • display of accelerator status

  43. Improved Diagnostics • display of accelerator status • 24 h charts start of main magnet overshoot procedure

  44. Improved Diagnostics • display of accelerator status • 24 h charts • beam stability programme

  45. ISL  Protons for Therapy (PT) • 11/04: decision to close ISL at the end of 2006 • Post-Docs and technical staff on temporary positions left • people were transferred to other departments • stop of investments • 9/06: start of planning operation solely for PT • reduced man-power(less beam-time) • reduction of beam lines, cables… • this step: almost completed • nevertheless:maintain reliability

  46. Accelerator Performance small number of beam time hours: major events have huge impact on statistics ~ 4500 hours/year ~ 1750 hours/year

  47. ISL  PT: Operation Comparison • H, 68 MeV • cyclotron fixed frequency • one NMR-probe/dipole • 2 target stations, identical focusing • 1/4 of existing beam line system • 12 therapy weeks/year • 2 shift operation (6:00 -22:00) • Thursday: start up and tuning • Friday: quality control of accelerator • weekend: standby* • Monday-Friday: Therapy • changing ion species and energies • ~ 15 target stations varying requirements on focusing • 34 weeks/year • 3 shifts a day (24/24) • exceptions on weekends: - experiments- infants, requiring more than 4 sessions

  48. PT: Reliability • availability 95 % in 20072/3 of downtime due to one major event: electrostatic injection • preventive maintenance • replacement of Ta shields by Ti (good experience in ECR source) • after one week: failure • fault of new ceramics ? • Ti shields (now Ta again) • delay of 2 days • uptime 2008: 98 %worst case: failure in electricity supply at 6:00 am • delay of 2 hours

  49. Accelerator Operation: Reliability • uptime 2009: 95 %1/3 of downtime again due to one major event: water leak in RF • interruption of therapy week for the first time since 1998 (110 therapy weeks) • availability 2010: 95 %frequent drops in RFerror difficult to find: isolator problems on tube socket of anode power supply

  50. Lessons Learned • turbo pumps on 60 % of rotational speed (standby mode) increases service intervals about factor 5 • analysis of residual gas for water • logging of electricity for failure analysis cryo pumps on cryo pumps off

More Related