1 / 19

СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ

Institute for High Energy Densities, Moscow, RAS. СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ. Хищенко К . В . * , Левашов П . Р ., Ломоносов И . В. Институт теплофизики экстремальных состояний РАН , Москва, Россия *konst@ihed.ras.ru.

dustin-moon
Download Presentation

СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute for High Energy Densities, Moscow, RAS СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ ХищенкоК. В.*,ЛевашовП. Р., ЛомоносовИ. В. Институт теплофизики экстремальных состояний РАН, Москва, Россия *konst@ihed.ras.ru Работа выполняется при финансовой поддержке РФФИ, гранты № 97-07-90370№ 01-07-90307№ 04-07-90310 Будва, Черногория13-20 мая 2006 VII Международная конференция «SCIENCE ONLINE: электронные информационные ресурсы для науки и образования»

  2. LM EXPERIMENTAL DATA AVAILABLE AT HIGH ENERGY DENSITIES H P, GPa H - principal Hugoniot HP - porous Hugoniots S - release isentropes IEX - isobaric expansion HP 1.0e+05 MELTING CRYSTALL S PLASMA 1.0e+02 CP LIQ. IEX 1.0e-01 LIQ.+GAS GAS 1.0e-04 1.0e+01 1.0e+00 1.0e+01 1.0e+00 T, 1000 K 1.0e+03 V, cм3/г

  3. 15 Pb impactor, Pb targetMULTIPHASE METASTABLE EOS Phase distribution s s+l l g+l g s+g 6.6 km/s, impactor 15 mm in diameter, plate thickness - 6.35 mm Поварницын М. Е., Хищенко К. В., Левашов П. Р.// Экстремальные состояния вещества. Детонация. Ударные волны / Под ред. Михайлова А. Л. Саров: РФЯЦ–ВНИИЭФ, 2005. С. 577–582.

  4. http://teos.ficp.ac.ru/rusbank/ http://www.ihed.ras.ru/rusbank/ URL: • 6 types of experiments • About 21000 registrations for more than 500 substances • 4 types of shock-wave data approximations • 3 types of caloric EOS • Access via the Internet using common browsers • Graphical representation of all data • EOS calculations (shock Hugoniots, release isentropes, isobars, isochors, cold curves etc.) with graphical representation • Modeling of typical shock-wave experiments

  5. DATABASE CONTAINS EXPERIMENTAL DATA ON • Shock compression of solid and porous samples • Isentropic expansion • Sound speed measurements behind shock front • Isobaric expansion (exploding wires) • Double shock Hugoniots • Free surface velocity profiles at shock loading SHOCK HUGONIOTS APPROXIMATIONS • AltshulerL.V. et al. // J. Appl. Mech. Techn. Phys. 1981.V.22.P.145 • KalitkinN.N., Kuz’minaL.V. //Mat. model. 1998. V.10. P.111 • ZhernokletovM.V. et al. Experimental data on shock compression and adiabatic expansion of condensed substances at high energy densities, Chernogolovka, 1996 • TruninR.F. et al. Experimental data on shock-wave compression and adiabatic expansion of condensed substances. Sarov: VNIIEF, 2001 EQUATIONS OF STATE • BushmanA.V., LomonosovI.V., FortovV.E. Equation of state of metals at high energy density. Chernogolovka: 1992 • LomonosovI.V., FortovV.E., KhishchenkoK.V. // Chem. Physics. 1995. V.14. P.47 • KhishchenkoK.V. Physics of Extreme States of Matter – 2004. Chernogolovka: 2004

  6. SEARCH BY SUBSTANCE

  7. EXPERIMENTAL POINTS: TABULAR AND TEXTUAL REPRESENTATION

  8. EXPERIMENTAL DATA EDITING(for registered users)

  9. SHOCK COMPRESSION OF NICKEL 1-13 – experimental data on shock compression of nickel samples of different initial densities a3 – approximation of shock-wave data a4 – approximation of quantum-statistical calculations e1 – calculation on semi-empirical equation of state

  10. ISENTROPIC EXPANSION OF COPPER 1, 2, 3, 6 – experimental data on isentropic expansion of copper samples with different initial densities e1 – calculation on semi-empirical equation of state

  11. QUARTZ DOUBLE COMPRESSION FREE SURFACE VELOCITY PROFILE Free surface velocity profile Sample: Mo, 0.416 mmthick Striker: Al, 0.05 mmthick, velocity 4100 км/с 2, 4 – experimental data e1 – equation of state calculation

  12. EOS CALCULATIONS: THE LIST OF CURVES

  13. Different curves calculated using semi-empirical EOS for teflon. Graphical and numerical representation of calculation results TEFLON: EOS CALCULATIONS Description of calculated curves and experimental points for teflon

  14. MODELING OF TYPICAL SHOCK-WAVE EXPERIMENTS • «Collision» and «Impedance matching» methods • 3 types of experimental set-ups for each methods • Riemann problem is solved with given accuracy using shock Hugoniot approximations and EOSs • User can choose materials of all substances participating in the experiment, their initial density and EOSs • Modeling results can be presented in graphical (in pressure-particle velocity diagram) and textual form • The interface allows one to estimate the influence of EOS or shock Hugoniot approximation on the interpretation of experimental data

  15. Striker:aluminum, KEOS7 EOS, W = 5.6 km/s Target:copper, D = 6.64 km/s «COLLISION» METHOD А1.Given areW, D, and striker shock Hugoniot. Determine pressurePandparticle velocity Uin shock-compressed striker and target, as well as densityρand specific internal energyEof the target. А2. Given are striker velocityWand shock Hugonots or EOSs of striker and target.Determine the shock wave velocity DandparametersP, U, ρ,andEin the target. А3.Given are shock wave velocity in the targetDand shock Hugoniots or EOSs of striker and target. Determine the target velocity WandparametersP, U, ρ, andEbehind shock wave front in the target. Experiment:AltshulerL.V., KormerS.B., BakanovaA.A., TruninR.F. // JETP. 1960. V.38. №3. P.790.

  16. «IMPEDANCE MATCHING» METHOD Striker:iron, KEOS7 EOS, D1 = 5.38 km/s Target:copper, D2 = 5.36 km/s B1.Given are shock wave velocitiesin the screenD1andin the sampleD2, as well as shock Hugoniot or EOSof the screen. DetermineparametersP, U, ρ,andEin the shock-compressed sample. B2.Given are shock wave velocity in the screen D1, andshock Hugoniot or EOSs of screen and sample. Determine shock wave velocity in the sample D2andparametersP, U, ρ,andEbehind the shock front. B3.Given is the shock wave velocity in the sampleD2. Determine the shock wave velocity in the screenD1andparametersP, U, ρ,andEof the sample behind the shock front. Experiment:AltshulerL.V., KrupnikovK.K., BrazhnikM.I. // JETP. 1960. V.34. №4. P.886.

  17. Столкновение кометы с Землей 20 km/s, impactor 1.8 km in diameter

  18. 3.0 2.25 1.50 0.75 10-2 Столкновение кометы с Землей Density distribution 20 km/s, impactor 1.8 km in diameter

  19. CONCLUSIONS AND FUTURE WORK • Public database on shock-wave experiments and equations of state has been creating: • - 6 types of experimental data, more than 20000 points • - graphical representation of all data • - 3 types of wide-range equations of state • - EOS calculation with graphical representation • - modeling of typical shock-wave experiments • We plan to incorporate multiphase tabular equations of state for metals into the database

More Related