Seminario expresividad sem ntica y l gica de segundo orden
Download
1 / 20

Seminario: Expresividad semántica y lógica de segundo orden - PowerPoint PPT Presentation


  • 112 Views
  • Uploaded on

Seminario: Expresividad semántica y lógica de segundo orden. Profesores Eduardo Alejandro Barrio y Javier Castro Albano 1er cuatrimestre de 2008 Facultad de Filosofía y Letras, UBA. Seminario: Expresividad semántica y lógica de segundo orden. Expresividad de los lenguajes de segundo orden

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Seminario: Expresividad semántica y lógica de segundo orden' - drew-clay


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Seminario expresividad sem ntica y l gica de segundo orden

Seminario: Expresividad semántica y lógica de segundo orden

Profesores Eduardo Alejandro Barrio y Javier Castro Albano

1er cuatrimestre de 2008

Facultad de Filosofía y Letras, UBA.


Seminario expresividad sem ntica y l gica de segundo orden1
Seminario: Expresividad semántica y lógica de segundo orden

  • Expresividad de los lenguajes de segundo orden

  • - Los lenguajes formales de primer orden tienen variables cuyo rango abarca objetos.

  • - La colección de ellos es el dominio del modelo.

  • - Un mismo lenguaje puede recibir distintas interpretaciones.

  • - Los lenguajes formales de segundo orden tienen, además de variables de primer orden, variables de segundo orden.

  • - Las variables de segundo orden ranguean sobre otros tipos de entidades: propiedades, relaciones, funciones, conceptos, colecciones, conjuntos, clases.


Seminario expresividad sem ntica y l gica de segundo orden2
Seminario: Expresividad semántica y lógica de segundo orden

  • Una teoría lógica de primer orden es una teoría formulada en un lenguaje de primer orden, cuyas únicas constantes lógicas son las conectivas y cuantificadores de primer orden, en la cual se puede dar una caracterización apropiada del conjunto de las fórmulas universalmente válidas. (o una de la noción de consecuencia lógíca)

  • La lógica de primer orden es:

    • - Correcta

    • - Completa

    • - Compacta

    • - Teorema de Kreisel

    • - Teorema Löw-Skolem


Seminario expresividad sem ntica y l gica de segundo orden3
Seminario: Expresividad semántica y lógica de segundo orden

  • L: < N, 0, S, <, +, x > + < (P) (P) ,(x) (x), , , ,  >

  • Formalización en un lenguaje de segundo orden:

  • Hay una propiedad que todos la tienen. (P) (x) (Px)

  • Hay una propiedad que algunos la tienen. (P) (x) (Px)

  • Hay una propiedad que ninguno la tiene. (P) (x)  (Px)

  • No existe una propiedad que todos la tengan.  (P) (x) (Px)

  • No existe una propiedad que algunos la tengan. (P) (x) (Px)

  • No existe una propiedad que ninguno la tiene.  (P)  (x) (Px)

  • Toda propiedad la tiene algún individuo. (P) (x) (Px)


Seminario expresividad sem ntica y l gica de segundo orden4
Seminario: Expresividad semántica y lógica de segundo orden

  • Finito FIN(X)

  • Cardinal Inaccesible INAC(X)

  • Existe una función unaria f (fx)

  • Existe una función que todos cumplen f (x) (fx)

  • Hay una relación no reflexiva (R)  (Rxx)

  • Hay una relación tal que todos la cumplen con alguno. (R) (x) (y) (Rxy)

  • Toda propiedad es compartida por dos objetos (P) (Px  Py) (identidad)


Seminario expresividad sem ntica y l gica de segundo orden5
Seminario: Expresividad semántica y lógica de segundo orden

  • A.- Conceptos Plurales

  • Some critics admire only one another

  • Algunos críticos sólo se admiran entre sí

    X (x Xx xy ((Xx Axy)  (x  y  Xy))

  • it Is supposed to mean that there is a collection of critics, each of whose members admires no one not in the collection, and none of whose members admire himself.

  • Se supone que significa que hay un grupo de críticos, cada uno de los cuales solamente admira a quien esté en ese grupo y ninguno de los cuales se admira a si mismo.


  • Seminario expresividad sem ntica y l gica de segundo orden6
    Seminario: Expresividad semántica y lógica de segundo orden

    • There are some horses that are all faster than Zev and also faster than the sire of any horse that is slower than all of them.

    • Hay algunos caballos que son más rápidos que Zev y también más rápidos que el padre (la estirpe) de cualquier caballo que sea más lento que todos ellos.

    • There is a nonempty collection X of horses, such that all members of X are faster than Zev and such that, whenever any horse is slower than all members of X, then all members of X are faster than the sire of that horse

    • Hay un grupo X no vacío de caballos tal que todos los miembros de X son más rápidos que Zev y tal que cuando cualquier caballo es más lento que todos los miembros de X, entonces todos los miembros de X son más rápidos que el padre (la estirpe) de ese caballo.


    Seminario expresividad sem ntica y l gica de segundo orden7
    Seminario: Expresividad semántica y lógica de segundo orden

    • B.- Conceptos de la aritmética:

    • La noción de consecuencia en los lenguajes de segundo orden es intratable como resultado de la riqueza expresiva de los lenguajes de segundo orden. Como en tales lenguajes se pueden formular los conceptos de la matemática, se suele ver tal imposibilidad de tratamiento de la noción de consecuencia como el resultado de la intratabilidad axiomática del discurso matemático en general.

    • Teorema de incompletitud de Gödel

    • Teorema de Tarski


    Seminario expresividad sem ntica y l gica de segundo orden8
    Seminario: Expresividad semántica y lógica de segundo orden

    • Sucesorx Sx0

      x(x < Sx): Cada número es menor a su sucesor.

    • Orden: x  y X ((XSx u (Xu  Xsu))  Xy)

    • Well order: Cualquier conjunto no vacío de números tiene un elemento menor

      P (Px x(Px y(Py  (y = x v x < y))))

    • Principio de Inducción. X ((X0 x (Xx  XSx)) x Xx)

    • ¿Podemos mantener que el principio de inducción es verdadero sin introducir clases ni asumir que las variables tienen el rango sobre todos los conjuntos que hay?


    Seminario expresividad sem ntica y l gica de segundo orden9
    Seminario: Expresividad semántica y lógica de segundo orden

    • Infinito: Sólo un conjunto infinito de oraciones de primer orden puede expresar la infinitud del universo.

      x y  (x  y) y x y z (  (x  y)  (x  z)  (y  z) y …

    • Hay una relación binaria transitiva en el universo tal que todo elemento cumple la relación con algún otro que no es él mismo.

      R xyz (Rxy  Ryz  Rxz) x (Rxx y Rxy)

    • Infinitud (Dedekind):

    • Hay una función uno a uno de X a X cuyo rango es un subconjunto propio de X.

    • Hay una función inyectiva no sobreyectiva.

    • INF (X): f x y (fx fy  x  y) x (Xx  Xfx) y (Xy x (Xx fx  y)))


    Seminario expresividad sem ntica y l gica de segundo orden10
    Seminario: Expresividad semántica y lógica de segundo orden

    • Finitud

    • FIN(X): f (x y (fx fy  x  y) x (Xx  Xfx) y (Xy x (Xx fx  y)))).

    • Conjuntos (Teoría naive):

    • Extensionalidad: dos conjuntos son el mismo conjunto si comparten todos sus elementos

    • Axioma V : a todo concepto le corresponde una extensión.

    • (Comprensión):

      • A toda condición (predicado - propiedad) le corresponde un conjunto.

        y x (Px  x  y)


    Seminario expresividad sem ntica y l gica de segundo orden11
    Seminario: Expresividad semántica y lógica de segundo orden

    • Oración de Russell

       (Xx xx): “It(x) is one of them(X) if and only if (iff) it(x) is not a member of itself”

       x (Xx  xx): “Every set is such that it is one of them(X) iff it is not a member of itself”

       Xx (Xx  xx): “Either there are some sets that are such that every set is one of them iff it is not a member of itself or every set is a member of itself”

      - (La segunda parte “or every set is a member of itself”, viene dada por el reemplazo de Xx por x = x, luego queda Xx (x = x xx), de lo que se sigue que x (xx), porque x = xsiempre será falsa)


    Seminario expresividad sem ntica y l gica de segundo orden12
    Seminario: Expresividad semántica y lógica de segundo orden

    • Hay ciertas afirmaciones acerca de conjuntos que queremos hacer, las cuales ciertamente no pueden hacerse usando fórmulas de primer orden (quizás afirmar que hay una “totalidad” o “colección” que contiene todo y sólo los conjuntos que no se contienen a sí mismos sea una de estas afirmaciones) pero las cuales pueden ser expresadas por medio de fórmulas de segundo orden.


    Seminario expresividad sem ntica y l gica de segundo orden13
    Seminario: Expresividad semántica y lógica de segundo orden


    Seminario expresividad sem ntica y l gica de segundo orden14
    Seminario: Expresividad semántica y lógica de segundo orden

    • Se formaliza en segundo orden como:

      X x Xx x (Xx  x  x) x (x  x  Xx))

    • Lo que es equivalente a

      X (x Xx x (x  x  Xx))



    Seminario expresividad sem ntica y l gica de segundo orden15
    Seminario: Expresividad semántica y lógica de segundo orden

    • Axioma de Separación:

    • Lectura Plural

       Hay algunos conjuntos tales que (z) (y) (x) (xy  (xz  x es uno de ellos))

    • Lectura en segundo orden

      X (z) (y) (x) (xy  (xz  Xx))


    Seminario expresividad sem ntica y l gica de segundo orden16

    Seminario: Expresividad semántica y lógica de segundo orden

    La paradoja de Orayen:

    1.- El lenguaje de la teoría de conjuntos trata acerca de todos los conjuntos.

    Por eso,

    2.- El dominio de un modelo que capture la interpretación pretendida del lenguaje de la teoría de conjuntos tendría que consistir en todos los conjuntos.

    Sin embargo,

    3.- El dominio de un modelo es un conjunto y de acuerdo a las teorías de conjuntos axiomatizadas no existe el conjunto de todos los conjuntos.

    Por tanto,

    4.- ningún modelo puede capturar la interpretación pretendida del lenguaje de la teoría de conjuntos.


    Seminario expresividad sem ntica y l gica de segundo orden17

    Seminario: ordenExpresividad semántica y lógica de segundo orden

    Argumento de Cartwright:

    argumenta que podemos cuantificar sobre algunas cosas sin que haya ninguna cosa singular de la cual ellas sean integrantes. Cartwright 1994, pp. 7-8.

    Él critica el "All-in-One Principle" (p. 7): que para cuantificar sobre ciertos objetos se tiene que presuponer que esos objetos constituyen una colección o colección completa, una única cosa de la cual esos objetos sean miembros.

    El critica la idea de que "we cannot speak of the cookies in the jar unless they constitute a set ..." (p.8)”

    ¿Cómo dar una definición de verdad en un modelo sin utilizar una entidad (Dominio) que reuna los valores semánticos?


    Seminario expresividad sem ntica y l gica de segundo orden18
    Seminario: orden Expresividad semántica y lógica de segundo orden

    • Argumento semántico de Williamson

    • (1) x (iF es una interpretación bajo la cual P se aplica a x ssi Fx)

    • (2) x (Rx ssi x no es una interpretación bajo la cual P se aplica a x )

    • (3) x (iR es una interpretación bajo la cual P se aplica a x ssi x no es una interpretación bajo la cual P se aplica a x)

    • (4) iR es una interpretación bajo la cual P se aplica iR ssi iR no es una interpretación bajo la cual P se aplica iR.

    • (1s) Ix (IF es una interpretación bajo la cual P se aplica a x ssi Fx)

    • (1p) iix (iiF son una interpretación bajo la cual P se aplica a x ssi Fx)


    ad