1 / 20

HYGROELECTRICITY

HYGROELECTRICITY. Concept : Extracting electricity out of humidity Not just a pie in the sky Atmosphere : A great source of electricity Could be of great utility in region of high humidity. Humans : A creative creature but still acts as virus when it comes to energy consumption

dory
Download Presentation

HYGROELECTRICITY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HYGROELECTRICITY • Concept: Extracting electricity out of humidity • Not just a pie in the sky • Atmosphere : A great source of electricity • Could be of great utility in region of high humidity

  2. Humans : A creative creature but still acts as virus when it comes to energy consumption • The end of fossil fuel • Global population • Demand for Energy • Global Warming Conclusion: A need to look for alternative and renewable source of energy What is the need ?

  3. A metal placed in humid environment develops charge on its surface. • The charge increases with the increase in relative humidity • The amount of charge depends on Nature of metal Exposure time Relative humidity Surface area HYGROELECTRICITY : The basic principle

  4. Electroneutrality principle statement water droplets in the atmosphere were electrically neutral, and remained so even after coming into contact with the electrical charges on dust particles and droplets of other liquids Recent researches shows ion imbalances Not actually contradiction water has ion imbalances that could allow it to produce a charge. The principle of electroneutrality states that if you consider the liquid as a whole that the net charge within the liquid will be neutral . The principle does not state that if you subdivide a liquid and only consider a portion of its volume that the charge in that portion has to be neutral Contrast with electroneutrality principle

  5. Decreases with increase in RH . • Due to increase in conductance,the charge dissipation increases. • Actually this idea was for dielectrics. • Charge deposition on metals due to humidity remain undiscovered. • Recent researches shows opposite behaviour in case of metals Unexpected pattern of R H v/s Static electricity

  6. Presented on Aug 25 at 240th meeting of ACS • Revealed his research showing unexpected electric charge distribution on metals and insulator surfaces. • Questioning the well proved concept of electrostatics. • Our lack of knowledge about the identity of charge forming species. • Builds and tests models explaining adsorption of H+ and OH- on metal in humid environment. • Aims at capturing this electricity calling it hygroelectricity. Gameblack’s report

  7. Experimental Observations • According to the previous theory of charge dissipation, static electricity decreases with increase in RH

  8. Dual behaviour of humidity • Encourages reproducibility of electrostatic experiments . • Electric shocks experienced from boiler surfaces • Age old mystery unfold • The idea was actually given by Faraday long ago but was buried in grave of time due to technological limitations Behaviour of humidity

  9. Isolated metals within faraday cages acquire charge spontaneously • Aluminium and CPB becomes negative • SS rendered positive • First observed during faraday cup experiment • Electric charge on isolated metal should remain zero if it is grounded • Sample made of brass or electrolytic copper mounted within but electrically isolated from an outer hollow CPB. • Charge drifts slowly to negative values • Independent of RH

  10. Different behaviour when outer hollow cylinder is made of aluminium • Similar behaviour at low Humidity • But at 50% or more RH , sharp steep on the curve. • Aluminium acquires negative charge, SS acquires positive charge.

  11. Possible explanation • Acidic behaviour of Aluminium oxides attracts OH- • Basic behaviour of SS oxide attracts H+ • Charge flows through conducive wires • H+ and OH- left out in atmosphere recombines

  12. Coating the aluminium and SS cylinder with silicone oil • Silicone oil reduces water vapour contact • Charge accumulation negligible upto relative humidity =95% HYGROPANELS • All the results encourages development of device to capture the charge to produce electricity • Charge on metal easily transferable to circuitry Verification of adsorption thery

  13. Stacked sheets of filter paper, Al, filter, SS, filter paper and so on in this order. • Acts as capacitor • The electrodes to be chosen so as to form oxide layer on its surface • One should be acidic in nature, the other basic • Filter paper used because it is an excellent dielectric and great adsorbent of moisture • A large number of capacitor bank should be connected in parallel by means of conducive wires Construction

  14. Allowing it to charge and short circuiting after certain intervals shows the following pattern • Quite reproducible at high humidity • Thus electricity can be generated continuously 

  15. The hygropanels can be mounted on the roof tops and electricity generated can be utilized like solar panels • As a supplement to solar panels • A 5cm2 area sheet can develop 10-4 C charge at RH> 60%we use 10 cm thick stacks or piles made of Aluminium or SS sheet (thickness-0.3-0.4 mm) • A stack of 10 cm thickness approx. equals to 200 sheets • Let n be the number of sheets in 1 m2 area, 10 cm thick panel • n=(100*100/5)*200*10 =4*105 • Energy generated by one capacitor bank =0.8(v)*10-5(C/s) W • This multiplied by n gives 3.2W of energy Possible application and quantitative analysis

  16. Cost analysis of the proposed hygropanels • We have calculated the approximate cost as given below: • The hygro panel taken is of 1m2 area 10 cm thick • Materials used where aluminium, stainless steel, filter paper, conducive wires, etc. • Supposing 33% of the panel is made with aluminium and another 33% by stainless steel, and the rest with filter paper, conducive wiring, etc. • Density of aluminium = 2700kg/m3 • Hence amount of aluminium used = 2700/1*1*0.1*3 = 85 kg approx • Similarly density of stainless steel = 8000 kg/m3 • Hence amount of SS used = 240 kg

  17. Rates • Aluminium = Rs 70 per kg • SS = Rs 100 per kg • Total cost on metal = 70*85+240*100= Rs 29950 • Extra cost on wiring panel and filter paper = Rs 10000 • Total cost of hygropanel = Rs 39500 approx Although in this amount of money we can have a 224 W solar panel, but further researches and developments would for sure bring down the cost per unit of electricity produced . Efficiency • Talking of the efficiency , we don’t have any idea about the exact value because it has never been practically implemented but it could be well around 90% due to the static nature of the device.

  18. Other possible future energy sources are using waste heats , body electricity etc. • But in this technology small electricity needs not to be stored because of the static nature of the system • Unlike solar technology, doesn’t work only in day time • Need not to be mounted on roof tops only • Doesn’t involve manual interference • Can be employed as supplement to solar technology • Can prove to be of great utility in coastal areas • The metals used are not so costly • Can act as absorber of atmospheric electricity formed during lightning • Thus useful in country like Brazil Why to invest money on development of this technology ?

  19. CHALLENGES • Since theoretically fascinating but practical application still a dream • Low level of current produced • Can only work in high humidity areas • Development of reverse potential between the electrodes due to desorbed or left out charges CONCLUSION • This technology will be challenged on many practical grounds but that doesn’t concern me a lot because “That's how science works”

More Related