1 / 34

Gaseous Ions and Chemical Mass Spectrometry Diethard K. B ö hme Ion Chemistry Laboratory

Gaseous Ions and Chemical Mass Spectrometry Diethard K. B ö hme Ion Chemistry Laboratory Department of Chemistry Centre for Research in Mass Spectrometry Centre for Research in Earth & Space Science York University, Toronto, Canada CIC Medal Lecture Winnipeg, 2007. Biological Ions.

Download Presentation

Gaseous Ions and Chemical Mass Spectrometry Diethard K. B ö hme Ion Chemistry Laboratory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gaseous Ions and Chemical Mass Spectrometry Diethard K. Böhme Ion Chemistry Laboratory Department of Chemistry Centre for Research in Mass Spectrometry Centre for Research in Earth & Space Science York University, Toronto, Canada CIC Medal Lecture Winnipeg, 2007

  2. Biological Ions Fe3+siderophore Ions Found in Solution Atomic Cations Er+ Nb+ K+ Rh+ Yb+ Co+ Cu+ OH-, CH3O-, C2H5O-, (CH3)3CO- C6H5-, C6H5CH2-, C6H5C(CH3)2-, t-BuC6H5-, H3O+ (H2O)n, OH- (H2O)n, CH3O- (CH3OH)n, C2H5O-(C2H5OH)n, Ca2+,Sr2+, Ba2+, H3O+ Ca+ Ho+ Zn+ Ru+ Pb+ Cr+ Cd+ Sr+ bleomycin+ (AGTCTG-5H+)5- Sc+ W+ Se+ Ti+ Dy+ V+ Re+ Lu+ Te+ Ir+ Hg+ Ge+ Sb+ Zr+ Ar+ Zn2+penicillin Fe+ Mg+ Pt+ La+ Ga+ Tm+ Tb+ Pr+ Bi+ Hf+ Ta+ Cs+ Ag+ As+ Tl+ Si+ Mo+ Pd+ 2+ Gd+ Ni+ Mn+ Ba+ Ce+ Au+ Os+ Rb+ Y+ Sm+ Sn+ Nd+ In+ Eu+ Carbonaceous Ions C+, Fe+, Si+, Mg+ H3+, CH5+, N2H+, HCO+ HCNH+, HC3NH+,SiC4H+, SiC10H8+ CH3+, C2H2+, C2H3+, C3H+, C3H3+, C4H3+ C3N+,HCN+, HC3N+,C60+, C60++, C60X+ NH2OH+, +H3NCH2CH2COOH O-, O2-, OH-, OH- (H2O)n H3O+, H3O+ (H2O)n CH3CNH+ Ionospheric, Cometary and Interstellar Ions C+, C2+, C3+, C6H6+, C60n+, C70n+ Fe+benzene, Fe+coronene Si+benzene, Si+naphthalene Gaseous Ions _____________________________________________________ C+, Fe+, Si+, Mg+ H3+ CH5+ N2H+ O2+, N2+ HCO+ H3O+,HCNH+ HC3NH+ NH2OH+ +H3NCH2CH2COOH  O2- OH-, CH3O- H3O+ OH- (H2O)n CH3O- (CH3OH)n H3O+ (H2O)n C2+, C3+, CN+ C3H3+, SiC10H8+ FeC6H6+ Sr(C60)4+ _________________________________________________________________ “Ions are jolly little buggars, you can almost see them“ Ernest Rutherford

  3. Looking for Ions in a Flowing Nitrogen Discharge Plasma ______________________________________________________ First quadrupole mass spectra (in Canada) _____________________________________________________ Mass Spectrometric Sampling Probe for Discharge Plasmas D.K. Böhme, J.M. Goodings. Rev. Sci. Instr. 37 (1966) 362. Ion Sampling Considerations for a Discharge Plasma of Nitrogen D.K. Böhme, J.M. Goodings. J. Appl. Phys. 37 (1966) 4261.

  4. Ion Chemistry in a Flowing Helium Plasma ______________________________________________________ O2+ O+ Slope = - k z/v t = z/v [B] >> [A+] • k • A+ + B  products • d[A+]/dt = k [A+][B] • v d[A+]/dz = k [A+][B] • [A+]z = [A+]z=0 exp(-k[B]z/v) In He at 0.35 Torr, 296 K (O2 + e  O+, O2+ + 2e) O+ + H2 OH+ + H OH+ + H2 H2O+ + H H2O+ + H2 H3O+ + H pseudo 1st order kinetics _______________________________________________________________________________________________________________________________________________ Fehsenfeld, F. C.; Schmeltekopf, A. L.; Ferguson, E. E. “Thermal-energy ion-neutral reaction rates. VII. Some hydrogen-atom abstraction reactions.” J. Chem. Phys. 46 (1967) 2802-8.

  5. Transition from the Gas Phase to Solution _____________________________________________________________ T = 298 K OH- + CH3Cl Cl- + CH3OH k = 1.5 x 10-9 cm3 molecule-1 s-1!! [cf: 10-26 in H2O] __________________________________________________________________________________________ Gas-phase reactions of anions with halogenated methanes at 297 ± 2K.K. Tanaka, G.I. Mackay, J.D. Payzant, D.K. Bohme. Can. J. Chem. 54, 1643-59 (1976). Bridging the gap between the gas phase and solution: transition in the kinetics of nucleophilic displacement reactions.D.K. Bohme, G.I. Mackay. J. Am. Chem. Soc. 103, 978-9 (1981).

  6. Transition from the Gas Phase to Solution (cont’d) _____________________________________________________ OH- + CH3OH CH3O- + H2O, k = 1.5 x 10-9 cm3 molecule-1 s-1 2962 KK = 2.2 x 107, Go =- 9.9 kcal mol-1 _______________________________________________________________ Standard acidity scale. The pKa of alcohols in the gas phase.D.K. Bohme, E. Lee-Ruff, L.B. Young. J. Am. Chem. Soc. 93, 4608-9 (1971). Acidity order of selected Broensted acids in the gas phase of 300K.D.K. Bohme, E. Lee-Ruff, L.B. Young. J. Am. Chem. Soc. 94, 5153-9 (1972). Bridging the gap between the gas phase and solution: transition in the relative acidity of water and methanol at 296 ± 2 K. G.I. Mackay, D.K. Bohme. J. Am. Chem. Soc. 100, 327 (1978).

  7. Proton-Transfer and Proton Affinities __________________________________________________________ X- + YH  Y- + XH XH+ + Y  YH+ + X XH+ + Y  YH+ + X ________________________________________________________________________________________ Determination of proton affinities from the kinetics of proton transfer reactions. VII. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. D.K. Bohme, G.I. Mackay, H.I. Schiff. J. Chem. Phys. 73, 4976-86 (1980).

  8. Selected-Ion Flow Tube (SIFT) Tandem Mass Spectrometry ______________________________________________________ Sifting Ions: One Major Reactant Ion (no Electrons) Electron Impact M C4H2+ + C4H2  C8H4+  C6H2+ + C2H2 C6H2+ + C4H2  C10H4+ ____________________________________________________________________________________________ Studies of reactions involving C2Hx+ ions with hydrogen cyanide using a modified selected ion flow tube. G.I. Mackay, G.D. Vlachos, D.K. Bohme, H.I. Schiff. Int. J. Mass Spectrom. & Ion Physics, 36, 259 (1980). Ion-molecule reactions with carbon chain molecules: reactions with diacetylene and the diacetylene cation. S. Dheandhanoo, L. Forte, A. Fox, D.K. Bohme. Can. J. Chem. 64, 641-8 (1986)

  9. Ionic Origins of Carbenes in Space______________________________________________________ Carbenes occur widely in the Universe :CH2, :C=C:, :C=S, :C=O, :C =NH, :C=C=C:, l,c-:C3H2, :C3O Their origin may involve ionizing radiation. e + propylene  C3H+ Only H2C4: has not yet been observed in space. ________________________________________________________________ Ionic Origins of Carbenes in Space. D.K. Bohme. Nature 319, 473-4 (1986)

  10. Synthesis of Exotic Carbon Rings ______________________________________________________ mCID Circumstellar Envelopes Titan’s Atmosphere Mg(HC3N)n-1+ + HC3N  Mg(HC3N)n+ + h, n  0 Mg(HC3N)n++ e  (HC3N)n + Mg Tetracyanocyclooctatetraene (Tetracyanosemibullvalene) _______________________________________________________________ Extraordinary Cluster Formation and Intramolecular Ligand-Ligand Interactions in Cyanoactylene Mediated by Mg+·: Implications for the Atmospheric Chemistry of Titan and for Circumstellar Chemistry. Rebecca Milburn, Alan C. Hopkinson, Diethard K. Bohme, J. Am. Chem. Soc. 127 (2005)13070-78.

  11. Ions and Life _______________________________________________________ NH2CH2COOH NH2CH2CH2COOH M+ H M e- NH3CH2COOH+ NH3CH2CH2COOH+ NH2CH2COOH+ NH2CH2CH2COOH+ CH3COOH CH3CH2COOH CH3COOH CH3CH2COOH -H2O -H2O h/A+ RH+ NH2OH+ NH2OH NH2OH2+ Interstellar gas h, heat Interstellar ice h h NH3(s) + H2O(s) NH2OH NO + 3H _______________________________________________________________________________ Gas-phase syntheses for interstellar carboxylic and amino acids. Blagojevic et al., Mon. Not. R. Astron. Soc. 339 (2003) L7-L11.

  12. Chemical Ionization of Fullerenes _____________________________________________ Penning Ionization He (3S1, 1S1) + C60 He(1S0) + C60+• + e “Electron Transfer/ Electron Detachment” He+ +C60 C602+ + He + e “Double-Electron Transfer/ Electron Detachment” Ar2+ +C60 C60•3+ + Ar + e _______________________________________________________________________________ Fullerene Cation and Dication Production by Novel Thermal-Energy Reactions of He+, Ne+, and Ar+ with C60. G. Javahery, S. Petrie, J. Wang and D.K. Bohme. Chem. Phys. Lett., 195, 7-10 (1992). Electron-Transfer Reactions with Buckminsterfullerene, C60, in the Gas Phase.D.K. Bohme, Int. Reviews in Physical Chemistry, 13, 163-185 (1994).

  13. Playing Chemistry with Buckyballs ____________________________________________________ C60+• C602+ _____________________________________________________________________________________________________ Derivatization of the Fullerene Dications C602+ and C702+ by Ion-Molecule Reactions in the Gas Phase.S. Petrie, G. Javahery, J. Wang and D.K. Bohme. J. Am. Chem. Soc., 114, 9177-9181 (1992). Gas-Phase Reactions of the Buckminsterfullerene Cations C60.+, C602+ and C60.3+ with Water, Alcohols and Ethers. R. Javahery, S. Petrie, H. Wincel, J. Wang and D.K. Bohme. J. Am. Chem. Soc., 115, 6295-6301 (1993).

  14. Charge ………! ___________________________________________________________ C603+• ______________________________________________________________________ Gas-Phase Reactions of Fullerene Monocations, Dications and Trications with Nitriles.G. Javahery, S. Petrie, J. Wang, H. Wincel and D.K. Bohme. J. Am. Chem. Soc., 115, 9701-9707 (1993).

  15. Chemistry as a Function of Charge State _________________________________________________________________ Chemistry is increasingly pre-empted by physics (e transfer) with increasing charge state. _______________________________________________________________________Fullerene Ions in the Gas Phase: Chemistry as a Function of Charge State.D.K. Bohme, Can. J. Chem. 77, 1453-1464 (1999).

  16. Gas-Phase Surface Chemistry ____________________________________________________ The Influence of Curvature (Strain) (C surface)+ + c-C5H6  addition Metal-Cation Ligation on Curved Carbonaceous Surfaces _____________________________________________________________________________________________________________________ The Influence of Surface Strain on the Chemical Reactivity of Fullerene Ions: Addition Reactions with Cyclopentadiene and 1,3-Hexadiene.. Becker, L.T. Scott and D.K. Bohme, Int. J. Mass Spectrom. Ion Processes 167/168, 519 (1997). Enhanced Reactivity of Fullerene Cations Possessing Adjacent Pentagons. S. Petrie and D.K. Bohme. Nature, 365, 426. (1993).

  17. The ICP/SIFT/QqQ instrument _____________________________________________________ Argon Plasma 5500 K P = 1 atm Aqueous solution of the atomic salt is injectedvia a nebulizer into the Ar plasma __________________________________________________________________________________________________________ An Inductively-Coupled Plasma / Selected-Ion Flow Tube Mass Spectrometer Study of the Chemical Resolution of Isobaric Interferences. G.K. Koyanagi, V.I. Baranov, S. Tanner and D.K. Bohme, J. Anal. At. Spectr. 15, 1207-1210 (2000).

  18. Periodic Table of Atomic Salt Solutions

  19. Reactions of atomic cations: Nb+ with N2O ______________________________________________________ • Primary Oxidation and Nitration • Nb+ + N2O  NbO+ + N2 •  NbN+ + NO • Further Oxidation • NbO+ + N2O  NbO2+ + N2 • NbN+ + N2O  NbNO+ + N2 • Clustering with N2O • NbO2+ + N2O  NbO2(N2O)+ • NbO2(N2O)+ +N2O NbO2(N2O)2+ • NbO2(N2O)2+ +N2O NbO2(N2O)3+ • NbNO+ + N2O  NbNO(N2O)+ • NbNO(N2O)+ +N2ONbNO(N2O)2+ • NbNO(N2O)2+ +N2ONbNO(N2O)3+ ________________________________________________________________ V.V. Lavrov et al.,J. Phys. Chem. A 106 (2002) 4581.

  20. Surfing the Periodic Table with N2O ______________________________________________________ M+ + N2O  MO+ + N2  MN+ + NO  M+(N2O) ________________________________________________________________ V.V. Lavrov et al.,J. Phys. Chem. A 106 (2002) 4581.

  21. Barriers to Electron Promotion ____________________________________________________ Ln+ + N2O  LnO+ + N2 _____________________________________________________ G.K. Koyanagi, D.K. Bohme. J. Phys. Chem. A 105, 8964 (2001).

  22. Arrhenius would be interested! ____________________________________________________ kexp= kc e-PE/RT

  23. Web data base 61 atomic cations x 15 molecules = 915 reactions !! http://www.chem.yorku.ca/profs/bohme/research/research.html

  24. Chemical Resolution in Elemental Analysis ____________________________________________________ The 87Rb+ (s0) / 87Sr+ (s1) Isobaric Interference Rb+ (s0) + SF6 NR k  1x10-13 cm3 s-1 Sr+ (s1) + SF6 SrF+ + SF5 97% k = 5.7x10-10 cm3 s-1  SrSF5+ + F 3%

  25. Discontinuities in Reactivity: Opportunities for Chemical Resolution ____________________________________________________ M+ + SF6  MFn+ + SF6-n  M+(SF6 )  SFn+ + MF6-n ____________________________________________________ C. Ping and D.K. Bohme, J. Phys.Chem. A, in preparation.

  26. Atomic Ions: the Ultimate Sites for Catalysis _____________________________________________ Catalytic Reduction of NxOy by CO (O-atom Transport Mediated by M+) Observed with: Fe+, Ge+ Sr+ Ba+,Os+, Ir+ Eu+, Yb+ ____________________________________________________ Blagojevic et al., Angew. Chem. Int. Ed. 2003, 42, 4923-4927

  27. Potential Energy Landscape for Catalysis ______________________________________________________ GAUSSIAN98 B3LYP/sdd/6-311+G* __________________________________________________________________ V. Blagojevic, G. Orlova, D. K Bohme, J. Am. Chem. Soc.127 (2005) 3545.

  28. Packing Atomic Metal Cations with C60 _____________________________________________________ Proposed tetrahedral structure for Sr(C60)4+ ICP/SIFT/QqQ mass spectrum _______________________________________________________________________ G.K. Koyanagi, J. Xuand D. K. Bohme, unpublished

  29. The ESI/qQ/SIFT/QqQ instrument _____________________________________________________ A – skimmer, B – q0 reaction cell, C extended stubbies, D – extended q0 rod set _________________________________________________________________________________________ A novel chemical reactor suited for studies of biophysical chemistry: construction and evaluation of a selected ion flow tube utilizing an electrospray ion source and a triple quadrupole detection system. G.K. Koyanagi et al. Int. J. Mass Spectrom. In press, 2007.

  30. From Atomic Dications…. _____________________________________________________ Oxidation of Ca++ Initiated by Charge Separation. Ca++ + O3 CaO+ + O2+ (k = 1.5 × 10-9 cm3 mol-1 s-1) CaO+ + O3 CaO2+ + O2 (k = 5 × 10-10 cm3 mol-1 s-1) CaO2+ + O3 CaO3+ + O2 (k = 6 × 10-10 cm3 mol-1 s-1) 100 M CaAcetate in H2O/CH3OH (1/1)

  31. …..to DNA _______________________________________________________________________________ Protonation and Hydrobromination of (AGTCTG-5H)5- 50 M in 20/80 CH3OH/H2O + HBr kobs kobs/kc 3.2 0.68 2.6 0.78 1.9 0.77 1.3 0.80 x10-9 cm3 s-1

  32. Acknowledgments Greg Koyanagi Stefan Feil Janna Anichina Voislav Blagojevic Michael Jarvis Andrea Dasic Tuba Gozet Sara Hashemi Mike Duhig Svitlana Shcherbyna

More Related