1 / 50

Circumstellar interaction in Type II SNe Evidence for CSI in different Type II SNe.

Circumstellar interaction in Type II SNe Evidence for CSI in different Type II SNe. CSI as a shock physics lab The ring collision of SN 1987A. How does it fit in?. SN 1993J. Radio: Synchrotron spectrum Wavelength dependent turn-on of emission VLBI imaging of SN 1993J and SN 1986J.

donald
Download Presentation

Circumstellar interaction in Type II SNe Evidence for CSI in different Type II SNe.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Circumstellar interaction in Type II SNe • Evidence for CSI in different Type II SNe. • CSI as a shock physics lab • The ring collision of SN 1987A. How does it fit in?

  2. SN 1993J Radio: Synchrotron spectrum Wavelengthdependent turn-on of emission VLBI imaging of SN 1993J and SN 1986J 1.3 cm SN 1993J IIb 21 cm Van Dyk et al 1994, Weiler, Panagia, Sramek 2002 Bartel et al Marcaide et al.

  3. SN 1993J optical Ha Filippenko et al 1994 Fransson et al 2004 He I Transition from Type II to Type Ib = Type IIb Box-like line profiles  narrow emitting shell

  4. Chevalier (1982) Chevalier & CF (1994)

  5. Shock structure Ti Fransson et al 1996  Te Chevalier & Blondin 1995 CS shock adiabatic Reverse shock radiative

  6. SN 1993J X-rays ROSAT 0.1 - 2.4 keV (Zimmermann et al 1994, Immler et al 2002) ASCA 1 – 10 keV (Uno et al 2002) COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994) Chandra (Swartz et al 2002) XMM/Newton (Zimmermann & Aschenbach 2003)) t < 50 dayskT ~ 100 keV Lx 5x1040 erg/s 50 - 200 keV 2x1039 erg/s 0.1 - 2.4 keV t > 200 dayskT ~ 1 keV Lx 1x1039 erg/s 0.1 - 2.4 keV Transition from hard to soft spectrum! Temperature (keV) Days after explosion Zimmermann & Aschenbach 2003

  7. X-ray evolution CF, Lundqvist & Chevalier 1996 At 10 days: Only X-rays from outer, CS shock T~109 K At 200 days: X-rays from reverse shock dominates T~107 K Hard to soft evolution natural consequence of the cool shell

  8. SN 1993J optical/UV HST (SINS) + Keck Mg II He I Ha [O III] Good fit with ionized ejecta (O III etc) + cool, dense shell (Ha, Mg II, Fe II) Consistency of X-ray flux and UV/optical flux

  9. SN 1995N (Fransson et al 2004) Type IIn SNe Broad H-lines(5-10,000 km/s)+ narrow (< 500 km/s) lines. HI, He, O III, Ne III-V, Fe II-VII Sometimes intermediate (few x 1000 km/s) metal lines Broad (eg Ha) 15,000 km/s may at be due to multiple electron scattering of narrow Ha emission by CS gas (Chugai 2001) Light curve often dominated by CSI even at early times Large mass loss rates ~ 10-4 - 10-3 MO/yr

  10. SN 1998S Fassia et al 2001 Narrow CS lines have V ~ 40-50 km/s

  11. SN 1995N (Fransson et al 2004) Spectral modeling: N/C large + enhanced O close to reverse shock  most of the envelope lost before the explosion dM/dt ~ 10-4-10-3MO yr-1 Late superwind phase? (Heger et al 1997) Binary ejection? May be connection to Ibcs (cf Chugai & Chevalier 2006) Progenitor of SN 2005gl possibly identified as an LBV star (if not a cluster) (Gal-Yam et al 2006)

  12. RADIO I. Free-free absorption by the CSM Twind ~ 105 K(Lundqvist & CF 1989) Good fit to Type IIL SNe (SN 1979C, 1980K…..) dM/dt = 5x10-5 – 10-4 MO/yr for u=10 km/s

  13. Type IIP (Chevalier, CF, Nymark 2006) SN 2004et Obs: Stockdale (2004), Beswick et al (2004), Argo et al (2005) Most common core collapse SN Inverse Compton scattering by photospheric photons suppresses radio at optical max. B << e indicated by flat light curve (?) degeneracy between B and e Typical for galactic RSG mass loss rates

  14. II. Synchrotron self-absorption Absorption by same rel. electrons as are emitting Note: Expansion velocity, i.e. radius, from line profiles or VLBI, not a parameter, c.f. GRB’s

  15. Size of radio emitting region VLBI Bartel et al 2001 HST, SINS Line widths (1.0-1.5)x104 km s-1

  16. SN 1993J Fit to each epoch + radius  B(t) & N(t) SSA + free-free SSA only dM/dt = 5x10-5 MO/yr for u=10 km/s

  17. Magnetic field and rel. particle density log ne log B log R log R 1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987) Amplification of B-field behind shock. Weibel instab.? (Medvedev & Loeb 1999) 2. UB 0.15 Uthermi.e. B  0.15 e 10-4 3. Ue 10-4Utherm Note : If ne(g) ~ np(g), then p ~ mp/me e ~ 0.2 ??

  18. CNO diagnostics SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> 1(Fransson et al 1989, 2001, 2004) SN 1998S SN 1998S IIn N/C ~ 6 SN 1995N IIn N/C ~ 4 SN 1993J IIb N/C ~ 12 SN 1987A IIP N/C ~ 5 SN 1979C IIL N/C ~ 8 Solar N/C ~ 0.25 All indicate CNO processing and mass loss and/or mixing

  19. N/C strong fcn of mass loss 40 M at ZAMS Meynet & Maeder 2003 N/C >> 1  CNO burning  heavy mass loss + mixing Rotation helps! Roche lobe overflow SN 1993J binary model Woosley et al 1994

  20. Mass loss rates Type IIP dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK Type IIL dM/dt  2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1). 'super wind' (Heger et al) t = Vs/u tobs 5x102 tobs > 104 / (u/10 km s-1) yrs i.e., several MO lost Type IIn dM/dt  10-4 -10-3 MO yr-1 (for u = 10 km s-1). super wind Clumping (Chugai)? Asymmetric wind (Blondin, Chevalier, Lundqvist)? Type Ib/c dM/dt 10-7 - 10-5 MO yr-1 (for u = 1000 km s-1). Mass loss rate uncertain

  21. SN 1987A ring collision SAINTS collab.

  22. Chandra & ATCA Park et al Manchester et al

  23. VLT/SINFONI March 2005 He I 2.06  Adaptive optics integral field unit for J, H, K Kjaer et al 2006 He I correlates with soft X-rays Expansion velocities along ring

  24. Dust emission Gemini S + Chandra Bouchet et al 2006 Spitzer 11.7  18.3  T ~ 166 K Si feature collisionally heated?

  25. VLT/UVES Gröningsson et al 2006

  26. Gröningsson et al (2006) Smith et al (2006), Heng et al (2006) Reverse shock Ha VLT/UVES 44Ti 2002 2000 Velocity (104 km/s) reverse shock Broad ~15,000 km/s emission from reverse shock going back into ejecta Ly and H from charge exchange of neutral ejecta (?) (Michael et al 2003)

  27. Intermediate velocity lines from shocked ring protrusions Oct 2002 Gröningsson et al 2006

  28. Gröningsson et al 2006 Coronal lines VLT/UVES spectrum res. ~ 10 km/s O III, Ne III-V, Fe VII, Fe X-XI, Fe XIV….. Max. velocity ~ shock velocity ~ 300-500 km/s Fe XIV  5303  Ts ~ 2x106 K H I, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock into ring protrusions

  29. Hydrodynamics of ring collision Optical emission from radiative shocks into the ring material Radio and hard X-rays from reverse shock? Borkowski et al 1997 Pun et al 2002

  30. Coronal line diagnostics T. Nymark… Shock velocity Shock velocity into hot-spots 300 – 400 km s-1 Ts ~ 2x106 K Coronal lines complement the X-rays to probe whole temp. range

  31. X-rays with Chandra Zhekov et al (2005) O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII….. V ~ 300-1700 km/s

  32. Optical/UV from radiative shocks Soft X-rays from radiative + adiabatic rev shock Hard X-rays and radio from adiabatic reverse shock Expect correlation between optical/UV and soft X-rays, but not with hard and radio

  33. Time evolution Optical: Gröningsson et al X-rays: Park et al 2005 Coronal lines and soft X-rays correlate. Soft X-rays from hot-spots. Hard from reverse shock & blast wave Expect increase of flux to continue. Blast wave velocity (i.e. radial expansion of X-rays and coronal emission) expected to decrease. Bright future!

  34. Narrow, unshocked lines Unshocked ring ionized by SN shock breakout, then recombining Ring is now ionized by X-rays from shocks Narrow lines will make a comeback Pre-ionized region ~ 5x1017 (n/104 cm-3 )-1 cm Low ionization lines dominated by recombining emission  decaying High ionization lines by X-ray pre-ionization.  Increase in flux Seen in [O III] and [Ne III] now!

  35. Origin of the rings R ~ 1018 cm, Vexp ~10 km s-1 tdyn~2x104 years N/C ~ 5 Origin (?): Merger inducing the equatorial mass loss and outer rings (Podziadlowski 1992, Heger & Langer 1998, Morris & Podziadlowski 2005) Can this happen in a Ic progenitor? Late SN2001em emission (Chugai & Chevalier 2006)

  36. Conclusions • Mass loss dominant factor for radio, X-rays and late optical • Radio, X-rays and optical/UV provide reliable mass loss rates • for progenitors. • Increasingly important for IIP  IIL  IIn,b  Ib/c. Consistent with the Type II taxonomy. • CNO processing seen in most SNe • Strong evidence for magnetic field amplification (and particle acceleration). In SN 1993J B-field close to equipartition. Electrons far below. • SN 1987A excellent case to study CSI,and both thermal and non-thermal processes. Expect most of the ring to be ionized by the X-rays and the collision with the main ring to start soon.

  37. Conclusions 1. Consistent picture of radio, X-rays and optical/UV observations based on CS interaction 2. Combination of radio, X-rays and optical/UV observations provide reliable mass loss rates for progenitors 3. Cool, dense shell crucial for X-ray evol., X-ray to optical/UV reprocessing, line formation…. 4. Radio observations provide an excellent laboratory for understanding non-thermal particle acceleration and collisionless shock physics 5. CNO processing seen in most SNe 6. Dust may form in the cool, dense shell 7. Stellar wind bubbles compressed by ISM pressure in starbursts to pc dimensions may explain constant density and high pressure inferred from GRB afterglows

  38. Why is circumstellar interaction of SNe important? Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core) Ejecta structure: Shock dynamics probes density structure of SN ejecta Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio) Relativistic particle acceleration Dust production SN – GRB connection: GRB afterglow determined by circumstellar environment of the SN.

  39. Two cases for the mass loss Reverse CD Blast wave Vrev Vs CSM ejecta • If rej >> rCSM  Vs >> Vrev Type IIL, IIb SN 1993J, SN 1979C • 2. rej << rCSM  Vs << Vrev Type IIn SN 1995N, SN 1998S • SN 1987A 1. Steady wind 2. Blobs, rings, superwinds…

  40. Radiative reverse shock spectra T. Nymark, CF, C. Kozma 2006 O VIII Te Fe XVIII-XXIII Si XIII C VI Mg XI-XII S XV Distance from shock RS radiative for One-temperature spectrum bad approx. for cooling shock . Affects abundance estimates by large factor!

  41. SN 1993J X-rays XMM: Zimmermann & Aschenbach 2003 Chandra: Swartz et al 2003 Thermal kT ~ 0.34 + 6.5 keV Enhanced Si (?) (Swartz et al) Can NOT use a one (or two) temperature components. Cooling reverse shock + shell absorption + forward shock

  42. Model and VLA light curves AssumeBand econstant Self-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer CF & Björnsson 1998 Obs: VLA: van Dyk et al 1994, Weiler, Panagia, Sramek 2002 Synchrotron cooling gives a ~ 1.0 Cooling break observed with GMRT and VLA at ~3400 days close to predicted (Chandra et al 2004)

  43. Free-free vs synchrotron self-absorption Chevalier 1998 FF SSA High & low V  F-F; Low & high V  SSA

  44. Results from radio modeling 1. rcsm r-2 OK!! No evidence for mass loss variations or s  2. 2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays 3. Injection spectrum ne g-2.1.Synchrotron cooling steepens this! 4. B  0.15 e 10-4. (Note : If ne(g) ~ np(g), then p ~ mp/me e ~ 0.2 ?? )

  45. CSI observed for all types of core collapse SNe Type Ib/c by RAC, here Type II Plan: 1. Strong interactors = strong radio, X-ray, optical emission  high mass loss rates Type IIL, IIn, IIp.. 2. Weakly interacting Type IIP 3. Transitions: SN 1987A weak  strong

  46. shock Te Shock velocity into hot-spots 300 – 500 km s-1 Coronal lines complement the X-rays to probe whole temp. range

  47. Intermediate velocity lines from shocked ring protrusions Oct 2002 Gröningsson et al 2006 V ~ 200-300 km/s H I, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock into ring protrusions (e.g. Pun et al 2000)

  48. Radio and X-ray brightening 0.5-2 keV 3-10 keV + radio 3 -20 cm Park et al 2005 Manchester et al Correlation of hard X-rays and radio probably close to reverse shock

More Related