Calcium homeostasis
This presentation is the property of its rightful owner.
Sponsored Links
1 / 58

Calcium Homeostasis PowerPoint PPT Presentation


  • 215 Views
  • Uploaded on
  • Presentation posted in: General

Calcium Homeostasis. By Dr. Khurram Irshad Department of Physiology. Calcium Homeostasis Key Players 1.Parathyroid Hormone 2.Calcitonin 3.and Vitamin D3. Calcium homeostasis. Key Organs Involved Parathyroid Gland Intestines Bone Kidneys And Skin.

Download Presentation

Calcium Homeostasis

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Calcium homeostasis

Calcium Homeostasis

By

Dr. Khurram Irshad

Department of

Physiology


Calcium homeostasis key players 1 parathyroid hormone 2 calcitonin 3 and vitamin d3

Calcium HomeostasisKey Players 1.Parathyroid Hormone 2.Calcitonin 3.and Vitamin D3


Calcium homeostasis1

Calcium homeostasis

Key Organs Involved

  • Parathyroid Gland

  • Intestines

  • Bone

  • Kidneys

  • And Skin


Physiological importance of calcium

Physiological importance of Calcium

  • Calcium salts in bone provide structural integrity of the skeleton

  • Calcium ions in extracellular and cellular fluids is essential to normal function of a host of biochemical processes

    • Neuoromuscular excitability

    • Blood coagulation

    • Hormonal secretion

    • Enzymatic regulation


Regulation of calcium concentration

Regulation of Calcium Concentration

  • The important role that calcium plays in so many processes that its concentration, both extracellularly and intracellularly, be maintained within a very narrow range.

  • This is achieved by an elaborate system of controls


Extracellular calcium

Extracellular Calcium

  • When extracellular calcium falls below normal, the nervous system becomes progressively more excitable because of increase permeability of neuronal membranes to sodium.

  • Hyperexcitability causes tetanic contractions

    • Hypocalcemic tetany


Extracellular calcium1

Extracellular Calcium

  • Three definable fractions of calcium in serum:

    • Ionized calcium 50%

    • Protein-bound calcium 41%

      • 90% bound to albumin

      • Remainder bound to globulins

    • Calcium complexed to serum constituents 9%

      • Citrate and phosphate

        Ca2+ normally ranges from 8.5-10 mg/dL in the plasma.(9.4 mg/dL or 2.4 mmol/L)


Calcium and phosphorous

Calcium and phosphorous?

  • Calcium is tightly regulated with Phosphorous in the body.

  • Phosphorous is an essential mineral necessary for ATP, cAMP second messenger systems, and other roles


Calcium turnover

Calcium turnover


Calcium and bone

Calcium and bone

  • 99% of Calcium is found in the bone. Most is found in hydroxyapatite crystals. Very little Ca2+ can be released from the bone– though it is the major reservoir of Ca2+ in the body.


Bones cells

Bones cells


Calcium turnover in bones

Calcium turnover in bones

  • 80% of bone is mass consists of cortical bone– for example: dense concentric layers of appendicular skeleton (long bones)

  • 20% of bone mass consists of trabecular bone– bridges of bone spicules of the axial skeleton (skull, ribs, vertebrae, pelvis)

  • Trabecular bone has five times greater surface area, though comprises lesser mass.

  • Because of greater accessibility trabecular bone is more important to calcium turnover


Bones

Bones

  • 99% of the Calcium in our bodies is found in our bones which serve as a reservoir for Ca++ storage.

  • 10% of total adult bone mass turns over each year during remodeling process

  • During growth rate of bone formation exceeds resorption and skeletal mass increases.

  • Linear growth occurs at epiphyseal plates.

  • Increase in width occurs at periosteum

  • Once adult bone mass is achieved equal rates of formation and resorption maintain bone mass until age of about 30 years when rate of resorption begins to exceed formation and bone mass slowly decreases.


Bone cell types

Bone cell types

  • There are three types of bone cells: Osteoblasts are the differentiated bone forming cells and secrete bone matrix on which Ca++ and PO precipitate.

  • Osteocytes, the mature bone cells are enclosed in bone matrix.

  • Osteoclasts is a large multinucleated cell derived from monocytes whose function is to resorb bone. Inorganic bone is composed of hydroxyapatite and organic matrix is composed primarily of collagen.


Bone formation

Bone formation

  • Active osteoblasts synthesize and extrude collagen

  • Collagen fibrils form arrays of an organic matrix called the osetoid.

  • Calcium phosphate is deposited in the osteoid and becomes mineralized

  • Mineralization is combination of CaP04, OH-, and H3CO3– hydroxyapatite.


Control of bone formation and resorption

Control of bone formation and resorption?

  • Bone resorption of Ca++ by two mechanims: osteocytic osteolysis is a rapid and transient effect and osteoclasitc resorption which is slow and sustained.

  • Both are stimulated by PTH. CaPO4 precipitates out of solution id its solubility is exceeded. The solubility is defined by the equilibrium equation: Ksp = [Ca2+]3[PO43-]2.

  • In the absence of hormonal regulation plasma Ca++ is maintained at 6-7 mg/dL by this equilibrium.


Osteocytic osteolysis

Osteocytic osteolysis?

  • Transfer of calcium from canaliculi to extracellular fluid via activity of osteocytes.

  • Does not decrease bone mass.

  • Removes calcium from most recently formed crystals

  • Happens quickly.


Bone resorption

Bone resorption?

  • Does not merely extract calcium, it destroys entire matrix of bone and diminishes bone mass.

  • Cell responsible for resorption is the osteoclast.


Calcium bones and osteoporosis

Calcium, bones and osteoporosis

  • The total bone mass of humans peaks at 25-35 years of age.

  • Men have more bone mass than women.

  • A gradual decline occurs in both genders with aging, but women undergo an accelerated loss of bone due to increased resorption during perimenopause.

  • Bone resorption exceeds formation.


Calcium bones and osteoporosis1

Calcium, bones and osteoporosis

  • Reduced bone density and mass: osteoporosis

  • Susceptibility to fracture.

  • Earlier in life for women than men but eventually both genders succumb.

  • Reduced risk:

    • Calcium in the diet

    • habitual exercise

    • avoid drinking carbonated soft drinks


Vertebrae of 40 vs 92 year old women

Vertebrae of 40- vs. 92-year-old women

Note the marked loss of trabeculae with preservation of cortex.


Calcium homeostasis

Hormonal control of bones


Vitamin d

Vitamin D

  • Vitamin D, after its activation to the hormone 1,25-dihydroxy Vitamin D3 is one of the principal regulator of Ca++.

  • Vitamin D increases Ca++ absorption from the intestine and Ca++ resorption from the bone .


Synthesis of vitamin d

Synthesis of Vitamin D

  • Humans acquire vitamin D from two sources.

  • Vitamin D is produced in the skin by ultraviolet radiation and ingested in the diet.

  • Vitamin D is not a classic hormone because it is not produce and secreted by an endocrine “gland.” Nor is it a true “vitamin” since it can be synthesized de novo.

  • Vitamin D is a true hormone that acts on distant target cells to evoke responses after binding to high affinity receptors


Synthesis of vitamin d1

Synthesis of Vitamin D

  • Vitamin D3 synthesis occurs in keratinocytes in the skin.

  • 7-dehydrocholesterol is photoconverted to previtamin D3, then spontaneously converts to vitamin D3.


Synthesis of vitamin d2

Synthesis of Vitamin D

  • PTH stimulates vitamin D synthesis. In the winter or if exposure to sunlight is limited (indoor jobs!), then dietary vitamin D is essential.

  • Vitamin D itself is inactive, it requires modification to the active metabolite, 1,25-dihydroxy-D.

  • The first hydroxylation reaction takes place in the liver yielding 25-hydroxy D.

  • Then 25-hydroxy D is transported to the kidney where the second hydroxylation reaction takes place.


Synthesis of vitamin d3

Synthesis of Vitamin D

  • The mitochondrial P450 enzyme 1a-hydroxylase converts it to 1,25-dihydroxy-D, the most potent metabolite of Vitamin D.

  • The 1a-hydroxylase enzyme is the point of regulation of D synthesis.

  • Feedback regulation by 1,25-dihydroxy D inhibits this enzyme.

  • PTH stimulates 1a-hydroxylase and increases 1,25-dihydroxy D.

  • Phosphate inhibits 1a-hydroxylase and decreased levels of PO4 stimulate 1a-hydroxylase activity


Vitamin d promotes intestinal calcium absorption

Vitamin D promotes intestinal calcium absorption

  • Vitamin D acts via steroid hormone like receptor to increase transcriptional and translational activity

  • One gene product is calcium-binding protein (CaBP)

  • CaBP facilitates calcium uptake by intestinal cells


Vitamin d action

Vitamin D action

  • The main action of 1,25-(OH)2-D is to stimulate absorption of Ca2+ from the intestine.

  • 1,25-(OH)2-D induces the production of calcium binding proteins which sequester Ca2+, buffer high Ca2+ concentrations that arise during initial absorption and allow Ca2+ to be absorbed against a high Ca2+ gradient


Vitamin d actions on bones

Vitamin D Actions on Bones

  • Another important target for 1,25-(OH)2-D is the bone.

  • Osteoblasts, but not osteoclasts have vitamin D receptors.

  • 1,25-(OH)2-D acts on osteoblasts which produce a paracrine signal that activates osteoclasts to resorb Ca++ from the bone matrix.

  • 1,25-(OH)2-D also stimulates osteocytic osteolysis.


Vitamin d and bones

Vitamin D and Bones

  • Proper bone formation is stimulated by 1,25-(OH)2-D.

  • In its absence, excess osteoid accumulates from lack of 1,25-(OH)2-D repression of osteoblastic collagen synthesis.

  • Inadequate supply of vitamin D results in rickets, a disease of bone deformation


Parathyroid hormone

Parathyroid Hormone

Parathyroid Hormone is essential for life


Parathyroid hormone1

Parathyroid Hormone

  • PTH is synthesized and secreted by the parathyroid gland which lie posterior to the thyroid glands.

  • The blood supply to the parathyroid glands is from the thyroid arteries.

  • The Chief Cells in the parathyroid gland are the principal site of PTH synthesis.


Synthesis of pth

Synthesis of PTH

  • PTH is translated as a pre-prohormone.

  • Cleavage of leader and pro-sequences yield a biologically active peptide of 84 aa.

  • Cleavage of C-terminal end yields a biologically inactive peptide.


Calcium regulates pth

Calcium regulates PTH


Regulation of pth

Regulation of PTH?

  • PTH secretion responds to small alterations in plasma Ca2+ within seconds.

  • When Ca2+ falls, cAMP rises and PTH is secreted.

  • A unique calcium receptor within the parathyroid cell plasma membrane senses changes in the extracellular fluid concentration of Ca2+.

  • This is a typical G-protein coupled receptor that activates phospholipase C and inhibits adenylate cyclase—result is increase in intracellular Ca2+ via generation of inositol phosphates and decrease in cAMP which prevents exocytosis of PTH from secretory granules.


Negative feed back loops

Calcitonin plays a role in skeletal integrity in pregnancy or breast feeding

Gastrointestinal hormones

Negative feed back loops


Calcium regulates pth secretion

Calcium regulates PTH secretion


Pth action

PTH action

  • The overall action of PTH is to increase plasma Ca++ levels and decrease plasma phosphate levels.

  • PTH acts directly on the bones to stimulate Ca++ resorption and kidney to stimulate Ca++ reabsorption in the distal tubule of the kidney and to inhibit reabosorptioin of phosphate (thereby stimulating its excretion).

  • PTH also acts indirectly on intestine by stimulating 1,25-(OH)2-D synthesis.


Primary hyperparathyroidism

Primary Hyperparathyroidism

  • Calcium homeostatic loss due to excessive PTH secretion

  • Due to excess PTH secreted from adenomatous or hyperplastic parathyroid tissue

  • Hypercalcemia results from combined effects of PTH-induced bone resorption, intestinal calcium absorption and renal tubular reabsorption

  • Pathophysiology related to both PTH excess and concomitant excessive production of 1,25-(OH)2-D.


Hypercalcemia of malignancy

Hypercalcemia of Malignancy

  • Underlying cause is generally excessive bone resorption by one of three mechanisms

  • 1,25-(OH)2-D synthesis by lymphomas

  • Local osteolytic hypercalcemia

    • 20% of all hypercalcemia of malignancy

  • Humoral hypercalcemia of malignancy

    • Over-expression of PTH-related protein (PTHrP)


Pth receptor defect

PTH receptor defect

  • Rare disease known as Jansen’s metaphyseal chondrodysplasia

  • Characterized by hypercalcemia, hypophosphotemia, short-limbed dwarfism

  • Due to activating mutation of PTH receptor

  • Rescue of PTH receptor knock-out with targeted expression of “Jansen’s transgene”


Hypoparathyroidism

Hypoparathyroidism

  • Hypocalcemia occurs when there is inadequate response of the Vitamin D-PTH axis to hypocalcemic stimuli

  • Hypocalcemia is often multifactorial

  • Hypocalcemia is invariably associated with hypoparathyroidism

  • Bihormonal—concomitant decrease in 1,25-(OH)2-D


Hypoparathyroidism1

Hypoparathyroidism

  • PTH-deficient hypoparathyroidism

    • Reduced or absent synthesis of PTH

    • Often due to inadvertent removal of excessive parathyroid tissue during thyroid or parathyroid surgery

  • PTH-ineffective hypoparathyroidism

    • Synthesis of biologically inactive PTH


Carpopedal spasm rickets

-Carpopedal Spasm-Rickets


Pseudohypoparathyroidism

Pseudohypoparathyroidism

  • PTH-resistant hypoparathyroidism

    • Due to defect in PTH receptor-adenylate cyclase complex

  • Mutation in Gas subunit

  • Patients are also resistant to TSH, glucagon and gonadotropins


Calcitonin

Calcitonin

  • Calcitonin acts to decrease plasma Ca++ levels.

  • While PTH and vitamin D act to increase plasma Ca++-- only calcitonin causes a decrease in plasma Ca++.

  • Calcitonin is synthesized and secreted by the parafollicular cells of the thyroid gland.

  • They are distinct from thyroid follicular cells by their large size, pale cytoplasm, and small secretory granules.


Calcitonin1

Calcitonin

  • The major stimulus of calcitonin secretion is a rise in plasma Ca++ levels

  • Calcitonin is a physiological antagonist to PTH with regard to Ca++ homeostasis


Calcitonin2

Calcitonin

  • The target cell for calcitonin is the osteoclast.

  • Calcitonin acts via increased cAMP concentrations to inhibit osteoclast motility and cell shape and inactivates them.

  • The major effect of calcitonin administration is a rapid fall in Ca2+ caused by inhibition of bone resorption.


Nutrition and calcium

Nutrition and Calcium

  • Calvo MS “Dietary considerations to prevent loss of bone and renal function”

    • “overall trend in food consumption in the US is to drink less milk and more carbonated soft drinks.”

    • “High phosphorus intake relative to low calcium intake”

    • Changes in calcium homeostasis and PTH regulation that promote bone loss in children and post-menopausal women.

    • High sodium associated with fast-food consumption competes for renal reabsorption of calcium and PTH secretion.


Nutrition and calcium1

Nutrition and Calcium

See Nutrition 2000 Vol 16 (7/8) in particular:

  • Harland BF “Caffeine and Nutrition”

    • Caffeine is most popular drug consumed world-wide.

    • 75% comes from coffee

    • Deleterious effects associated with pregnancy and osteoporosis.

      • Low birth-rate and spontaneous abortion with excessive consumption

      • For every 6 oz cup of coffee consumed there was a net loss of 4.6 mg of calcium

      • However, if you add milk to your coffee, you can replace the calcium that is lost.


Ill effects of soft drinks

Ill effects of soft drinks

  • Intake of carbonated beverages has been associated with increased excretion and loss of calcium

  • 25 years ago teenagers drank twice as much milk as soda pop. Today they drink more than twice as much soda pop as milk.

  • Another significant consideration is obesity and increased risk for diabetes.

  • For complete consideration of ill effects of soft drinks on health and environment see:

    • http://www.saveharry.com/bythenumbers.html


Exercise and calcium

Exercise and Calcium

  • Normal bone function requires weight-bearing exercise

  • Total bed-rest causes bone loss and negative calcium balance

  • Major impediment to long-term space travel


Calcium homeostasis

Tapping the facial nerve at the angle of jaw in a patient with moderate hyposecretion of a particular hormone elicits a characteristic grimace on that side of the face. Which endocrine abnormality could give rise to this so called ‘Chvostek sign’ ?


Bone remodeling

Bone remodeling

  • Endocrine signals to resting osteoblasts generate paracrine signals to osteoclasts and precursors.

  • Osteoclasts resorb and area of mineralized bone.

  • Local macrophages clean up debris.

  • Process reverses when osteoblasts and precursors are recruited to site and generate new matrix.

  • New matrix is minearilzed.

  • New bone replaces previously resorbed bone.


  • Login