- 83 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about ' Mechanical Modeling' - devona

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

The dynamic response is give by d’Alembert principle and is

From this equation the switching time, mechanical bandwidth and

and effect of thermal noise can be predicted. The parameter that

affect the these parameter are resonant frequency and quality factor.

The actual mass of the beam is 0.35-0.45 which is moving. 0.5Q 2 is

desirable for a better operation.

Gas fundamental and Quality factor

The mean free path , Kundsen number K and viscosity is given by

A low kundsen number means that there are many collusion and

the gas is viscous (liquid).

The damping and Quality factor is given by

So from the equation above it is evident that by slot (p) and low pressure

low damping increase the Quality factor. Damping also change with height.

The switching time can be calculate form eq. 3.16 and with little

damping and with damping the switching time is given by.

The release time can be calculated using nonlinear dynamic equation

from the restoring force with actuation force keeping zero.

The velocity, acceleration and Current of the beam during switching

is shown in the figure 3.7,3.8,3.9.

The fringing capacitance is given by equation 3.27 and force 3.28

and it is seen duo to fringing capacitance the switching time reduces.

Effect of damping resistance and Taylored Actuation voltage

(consult with Trond)

Switching energy, Responses to waveform and self actuation

The energy consumed in switching process is sum of electrical and

mechanical energy of the beam and given by eq 3.29, 3.30.

For a typical switch the switching energy is around 5 nJ.

The response to single wave form is shown in fig 3.13 and the double

or multiple wave form is shown in fig 3.14 . Also the amplitude and

Frequency modulated signal response is shown.

For high power the dynamic analysis also show the same trend as static

and self actuate the beam and collapse to down position for high power.

The intermodulation product power is given by eq 3.44 and increase

with Cup as the product depends on the upstate capacitance. So inter

modulation product are much larger in varactors than switch.

It also depends on K and g0.

The brownian noise mainly come from damping so a high Q switch has less noise.

Fn=sqrt(4bkT), It also depends on K.

A MEMS shunt switch can be modeled RLC series resonator in shunt

connection to Transmission line shown in fig 4.1.

The switch shunt impedance and LC series resonant frequency given by

The Up-state capacitance with fringing field is given in Table 4.1. The

Rule of thumb is that the hole diameter should be less that 3g, not

to affect the up-state parallel plate capacitors.

The down state capacitance is degraded if the MEMS bridge layer

and dielectric layer is rough. It can be used high-dielectric to increase

the downstate capacitance.

Current distribution, Resistance, Inductance and Loss

The Current distribution is shown in figure 4.3 and it is seen that the

current is concentrated on the edge of the transmission line and also

at the edge of beam, i.e. skin effect.

Series resistance is combination of Rs1 duo to t-line loss and Rs due

to MEMS bridge only. For thin beam the bridge resistance is constant.

Inductance: The inductance can be modeled from down state position

it’s mainly depends on the gap in CPW line and is higher for low spring

constant beam due to mender.

Loss: The loss is given by eq 4.9 and 4.10 and the switch loss is

given by eq 4.14 and 4.15 for both up and down position.

The upstate capacitance can be found from S parameter and eq. 4.16

and 4.17.

Down state capacitance and inductance: Below resonant frequency

and s parameter and eq. 4.19 the downstate capacitance can be

measured, and from resonant frequency the inductance can be

measured which is dominant after f0.

Series resistance: The series resistance is best fitted around LC resonant

frequency and given by eq 4.20. For upstate resistance a no of switch has

to be series connected and using eq. 4.14

Download Presentation

Connecting to Server..