1 / 11

Astronomy Picture of the Day

Astronomy Picture of the Day. The Astronaut Who Captured a Satellite Earth at Night 47 Tuc Near the Small Magellanic Cloud Plasma Jets from Radio Galaxy Hercules A. Index. Explanation:

devlin
Download Presentation

Astronomy Picture of the Day

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astronomy Picture of the Day

  2. The Astronaut Who Captured a Satellite • Earth at Night • 47 Tuc Near the Small Magellanic Cloud • Plasma Jets from Radio Galaxy Hercules A Index

  3. Explanation: In 1984, high above the Earth's surface, an astronaut captured a satellite. It was the second satellite captured that mission. Pictured above, astronaut Dale A. Gardner flies free using the Manned Maneuvering Unit and begins to attach a control device dubbed the Stinger to the rotating Westar 6 satellite. Communications satellite Westar 6 had suffered a rocket malfunction that left it unable to reach its intended high geosynchronous orbit. Both the previously caught Palapa B-2 satellite and the Westar 6 satellite were guided into the cargo bay of the Space Shuttle Discovery and returned to Earth. Westar 6 was subsequently refurbished and sold. The Astronaut Who Captured a Satellite

  4. This remarkably complete view of Earth at night is a composite of cloud-free, nighttime images. The images were collected during April and October 2012 by the Suomi-NPP satellite from polar orbit about 824 kilometers (512 miles) above the surface using its Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS offers greatly improved resolution and sensitivity compared to past global nightlight detecting instrumentation on DMSP satellites. It also has advantages compared to cameras on the International Space Station. While the space station passes over the same point on Earth every two or three days, Suomi-NPP passes over the same point twice a day at about 1:30am and 1:30pm local time. Easy to recognize here, city lights identify major population centers, tracking the effects of human activity and influence across the globe. That makes nighttime images of our fair planet among the most interesting and important views from space. Earth at Night

  5. Globular star cluster 47 Tucanae is a jewel of the southern sky. Also known as NGC 104, it roams the halo of our Milky Way Galaxy along with around 200 other globular star clusters. The second brightest globular cluster (after Omega Centauri) as seen from planet Earth, it lies about 13,000 light-years away and can be spotted naked-eye near the Small Magellanic Cloud (SMC) in the constellation of the Toucan. Of course, the SMC is some 210,000 light-years distant, a satellite galaxy of our Milky Way and not physically close to 47 Tuc. Stars on the outskirts of the SMC are seen at the upper left of this broad southern skyscape. Toward the lower right with about the same apparent diameter as a Full Moon, dense cluster 47 Tuc is made up of several million stars in a volume only about 120 light-years across. Away from the bright cluster core, the red giants of 47 Tuc are easy to pick out as yellowish tinted stars. Globular cluster 47 Tuc is also home to exotic x-ray binary star systems. 47 Tuc Near the Small Magellanic Cloud

  6. Why does this galaxy emit such spectacular jets? No one is sure, but it is likely related to an active supermassive black hole at its center. The galaxy at the image center, Hercules A, appears to be a relatively normal elliptical galaxy in visible light. When imaged in radio waves, however, tremendous plasma jets over one million light years long appear. Detailed analyses indicate that the central galaxy, also known as 3C 348, is actually over 1,000 times more massive than our Milky Way Galaxy, and the central black hole is nearly 1,000 times more massive than the black hole at our Milky Way's center. Pictured above is a visible light image obtained by the Earth-orbiting Hubble Space Telescope superposed with a radio image taken by the recently upgraded Very Large Array (VLA) of radio telescopes in New Mexico, USA. The physics that creates the jets remains a topic of research with a likely energy source being infalling matter swirling toward the central black hole. Plasma Jets from Radio GalaxyHercules A

  7. Javier Marín Suárez1ºBach.-B

More Related