1 / 35

Artificial Intelligence Logic

Artificial Intelligence Logic. L. Manevitz. Logic - Advantages. Pretty universal (need to choose the correct language). Clear semantics Interpretation. Intended Interpretation. Uniform Method of Manipulating Theorem proving via Resolution. Green’s Trick for answer production.

devin
Download Presentation

Artificial Intelligence Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Artificial IntelligenceLogic L. Manevitz L. Manevitz Lecture 4

  2. Logic - Advantages • Pretty universal • (need to choose the correct language). • Clear semantics • Interpretation. • Intended Interpretation. • Uniform Method of Manipulating • Theorem proving via Resolution. • Green’s Trick for answer production. L. Manevitz Lecture 4

  3. Representing Information Actual World Actual World Semantic connection Representation Interpretation Formal connection Formulas Formulas L. Manevitz Lecture 4

  4. Basic Concept Let G be a set of formulas. Let φ be a specific formula. When does φ logically follow from G ? Meaning : in every possible interpretation where G is true then φ is true. Notationally :G φ (G “semantically implies φ). L. Manevitz Lecture 4

  5. Syntax • Language: • Logical symbols. • Relation symbols. • Function symbols. • Constant symbols. • Terms – recursive. • Formulas – recursive. • Sentences – no free variables. L. Manevitz Lecture 4

  6. Semantics - Interpretation θ θ θ θ θ θ θ θ θ θ= <A|R1,R2,..,Ri,F1,F2,..,Fk,C1,C2,..,Cl> Ri AxAx..xA Fk : AxAx..xA A Cl A θ θ θ L. Manevitz Lecture 4

  7. Semantics • To handle variables, we extend the notion of satisfaction to include variables (explain on blackboard) L. Manevitz Lecture 4

  8. How to work with • Basic semantic equivalents : • (e.g. De Morgan’s Laws, Assoc. Laws, Distr. Laws). • Fundamental Problem : • Find mechanical procedure to test if G φ or not. L. Manevitz Lecture 4

  9. Abstraction of Proof - G φ • Intuitive: φ1 φ2 φn = φ • Example: “Acceptable Rule” φ ψ (MP) Where φiG or φi follows from {φj | j<i} By “acceptable” rule φ ψ L. Manevitz Lecture 4

  10. Definitions • A system S is consistent if whenever G φ then G φ. • A system S is complete if whenever G φ then G φ. s s L. Manevitz Lecture 4

  11. Theorem • Completeness Theorem: There is a system S s.t. G φ G φ L. Manevitz Lecture 4

  12. G A A B A B Example • Trivially complete where A is any formula. • Sound Rule: (MP) L. Manevitz Lecture 4

  13. A B A B Example cont. [M | s] A B iff [M | s] A or [M | s] B by def. If [M | s] A then [M | s] A by def. It follows that [M | s] B. L. Manevitz Lecture 4

  14. What kind of systems ? • Mimic People (“Natural Deduction”). • Mimic Mathematical Proof. • Convenient for Computers. L. Manevitz Lecture 4

  15. Proof Systems “Natural Deduction” Formal Computational e.g. Resolution Completeness Theorem L. Manevitz Lecture 4

  16. What rule to apply to what ? Control Rules of Deduction DATA Set of formulas L. Manevitz Lecture 4

  17. Resolution System (Syntax)Sound Rule • Basic Idea: (φ1 … φn) ( φ1 ψ1 … ψm) φ2 … φn ψ1 … ψm L. Manevitz Lecture 4

  18. Semantic Equivalents • We can check this, now that we have a definition of truth in interpretations. • Example ~(~p) is equivalent to p L. Manevitz Lecture 4

  19. Semantic Equivalents • ( A) A • A B A B • A B B A • A B (A B) (B A) • Associative : • A (B C) (A B) C • A (B C) (A B) C L. Manevitz Lecture 4

  20. Semantic Equivalents cont. • Commutative: • A B B A • A B B A • Distributive: • A (B C) (A B) (A C) • A (B C) (A B) (A C) L. Manevitz Lecture 4

  21. Semantic Equivalents cont. • De Morgan: • (A B) ( A) ( B) • (A B) ( A) ( B) L. Manevitz Lecture 4

  22. Quantifier Equivalences • De Morgan: • (( x)A(x)) ( x) A(x) • (( x)A(x)) ( x) A(x) • x A(x) y A(y) • x A(x) y A(y) • x [P(x) Q(x)] ( x P(x)) ( x Q(x)) • x [P(x) Q(x)] ( x P(x)) ( x Q(x)) L. Manevitz Lecture 4

  23. Resolution (Predicate)G S • Convert G to set of clauses. • Convert S to set of clauses. • Let Clauses := all the above clauses. • Repeat until NIL found : • Select two clauses. • Resolve (using Unification). • Check result : • If result is NIL finish. • Otherwise add result to Clauses L. Manevitz Lecture 4

  24. Over all Procedure • Eliminate , . • Push to atomic. • Eliminate . • Rename variables in a formula. • Move quantifier to the left. L. Manevitz Lecture 4

  25. Over all Procedure • Push down. • Eliminate conj. - By making separate formulas. • Rename variables in all formulas. • Eliminate - Convention. L. Manevitz Lecture 4

  26. Example • [ x (A(x) B(x)] [ y C(y)] • [ x (A(x) B(x)] [ y C(y)] • [ x (A(x) B(x)] [ y C(y)] • [ x ( A(x) B(x)] [ y C(y)] • A(a) B(a) y C(y) • y [ A(a) B(a) C(y)] • Get Clause [ A(a) B(a) C(y)] To replace add a constant to language. L. Manevitz Lecture 4

  27. - Elimination example • x y Boss (y,x) • Problem: • Constant not sufficient. • y depends on x. • Solution: • Add a new function symbol f(). • x Boss (f(x),x) L. Manevitz Lecture 4

  28. Example Eliminate  • x [Brick(x) [ y[On(x,y) Pyramid(y)] y[On(x,y) On(y,x)] y[ Brick(y) Equal(x,y)]]] • x [ Brick(x) [ y[On(x,y) Pyramid(y)] y[On(x,y) On(y,x)] y[ ( Brick(y)) Equal(x,y)]]] Push L. Manevitz Lecture 4

  29. Example cont. Eliminate • x [ Brick(x) [ y[On(x,y) Pyramid(y)] y[ On(x,y) On(y,x)] y[Brick(y) Equal(x,y)]]] • x [ Brick(x) [[On(x,support(x)) Pyramid(support(x))] y[ On(x,y) On(y,x)] y[Brick(y) Equal(x,y)]]] Rename variables apart L. Manevitz Lecture 4

  30. Example cont. Move to left • x [ Brick(x) [[On(x,support(x)) Pyramid(support(x))] y[ On(x,y) On(y,x)] z[Brick(z) Equal(x,z)]]] • x y z [ Brick(x) [[On(x,support(x)) Pyramid(support(x))] [ On(x,y) On(y,x)] [Brick(z) Equal(x,z)]]] Push down L. Manevitz Lecture 4

  31. Example cont. • x y z [ Brick(x) [On(x,support(x)) Pyramid(support(x))]] [ Brick(x) On(x,y) On(y,x)] [ Brick(x) Brick(z) Equal(x,z)]] L. Manevitz Lecture 4

  32. Example cont. • x y z [[ Brick(x) On(x,support(x))] [ Brick(x) Pyramid(support(x))] [ Brick(x) On(x,y) On(y,x)] [ Brick(x) Brick(z) Equal(x,z)]] Eliminate conj. L. Manevitz Lecture 4

  33. Example cont. • x [ Brick(x) On(x,support(x))] x [ Brick(x) Pyramid(support(x))] x y [ Brick(x) On(x,y) On(y,x)] x z [ Brick(x) Brick(z) Equal(x,z)] Rename variables L. Manevitz Lecture 4

  34. Example cont. • x [ Brick(x) On(x,support(x))] w [ Brick(w) Pyramid(support(w))] u y [ Brick(u) On(u,y) On(y,u)] v z [ Brick(v) Brick(z) Equal(v,z)] Eliminate L. Manevitz Lecture 4

  35. Example cont. • Clause form: Brick(x) On(x,support(x)) Brick(w) Pyramid(support(w)) Brick(u) On(u,y) On(y,u) Brick(v) Brick(z) Equal(v,z) L. Manevitz Lecture 4

More Related