Sponsored Links
This presentation is the property of its rightful owner.
1 / 44

Нейросетевые технологии в обработке и защите данных PowerPoint PPT Presentation


  • 271 Views
  • Uploaded on
  • Presentation posted in: General

Нейросетевые технологии в обработке и защите данных. Защита информации иммунными нейронными сетями Лекция 1 2 . Особенности механизма вывода в системах н ечеткого вывода. Классический подход к реализации нейронечетких классификаторов.

Download Presentation

Нейросетевые технологии в обработке и защите данных

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


12.


, .

, .


- , if then, , :

x A, B,

A, B , x .

, .


:

A B.

, , -.

N xi : x1 A1x2 A2 xN AN, B.


A B (x, y)

:


, , .

, .


, . , , , , .

. .


, , , , , .

, , . . ( Max).


  • ;

  • ;

  • ;

  • ;

  • ;


.

, .


:

Rule_1:IF Condition_1 THEN Conclusion_1 (F1 )

Rule_2:IF Condition_2 THEN Conclusion_2 (F2)

Rule_n:IF Condition_n THEN Conclusion_n (Fn)

Fi (i{1,2,,n}) , [0, 1]. , 1.

, P, V, W, , .



(Fazzification)

.

, , , . , , .


(Fazzification)

. iis , , ai (x), .


:

  • ;

  • ;

  • 1 - . 1 is 1, 1is 2,1is 3. 55/.


1

0.8

0.6

0.4

0.2

0

1)

b1

0 10 20 30 40 50 60 70 80 90 100

a1

1

0.8

0.6

0.4

0.2

0

2)

b1

0 10 20 30 40 50 60 70 80 90 100

a1

1

0.8

0.6

0.4

0.2

0

3)

b1

0 10 20 30 40 50 60 70 80 90 100

a1


0, a1=55/.

0.67.

0, a1=55/. 3.


(Aggregation)

.

, , ( ).


  • ;

  • 1 ,2 .

    a1= 55 /. , a2 = 70.


0.67 0.8.

= 0.8, 0.67 0.8.


1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

b2

b1

b1"

0 40 50 60 0 30 40 50 60 70 80 90 100

a1 a2 TC

1)

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

b2

b1"

b1

0 40 50 60 0 30 40 50 60 70 80 90 100

a1 a2 TC

2)


(Activation)

. , . Fi ( 1 ).


(Activation)

, C = {c1, c2, , cq} q , .

.

min : (y) = min{ci, (y)}

prod : (y) = ci (y)

average :(y) = 0.5 (ci + (y))


:

IF THEN

1 , 2 . a1= 55/.


= 0.67, c1 .

, min , , prod , .


1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

b1"

b1

0 40 50 60 0 30 40 50 60 70 80 90 100

a1

TC

1)

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

b1"

b1

0 40 50 60 0 30 40 50 60 70 80 90 100

a1

TC

2)


(Accumulation)

W ={w1, w2,, wp}. p . , .


c1, c2,c3, , .


1

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 90 100


max c1, c2,c3 , .


(Deffuzzification)

(crisp) W = {w1, w2,, wp}.

, ( , .).


:

n , .


y = u, u

, , , . . .


1

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 90 100

.


-

-

()

()

()

-( ):

x A, yB

A B

:

35


( Min) x1,x2 , x, A B .

, 1 2, ( Max).


--

-

min

A1B1C1 C1C1C1

1

x y

z1 = a1 x0 + b1 y0

C2 C2C2C2

2

z2 = a2 x0 + b2 y0

x0 x y0 y

max

max

zc-


1. ;

2. ;

3. , x;

4. A B;

5. () ;

6. . .


(Larsen)

1. ;

2. ;

3. . , , ;

4. prod

5. (max) ;

6. .


(TSK)

  • . :

    If 1is and 2 is then w = c1 a1 + c2 a2

    c1, c2 , w ;

    2. ;

    3. (min - );


(TSK)

4. min , , a1,a2 ;

5. ;

6. .

.


(Tsukamoto)

  • ;

  • ;

  • . ;

  • min . wj ci = (wj) (i {1,2,,q})

    q ;

    5. ;

    6. . .


, prod .

(TSK) , , .


ANFIS (Adaptive-Network-Based Fuzzy Inference System) Fuzzy Logic Toolbox ( ) MATLAB . ANFIS - . Fuzzy Logic Toolbox Mamdani , , Sugeno .


  • Login