water quality issues fees and management options
Download
Skip this Video
Download Presentation
Water Quality Issues, Fees and Management Options

Loading in 2 Seconds...

play fullscreen
1 / 109

Water Quality Issues, Fees and Management Options - PowerPoint PPT Presentation


  • 174 Views
  • Uploaded on

Water Quality Issues, Fees and Management Options. Mr. L Sizemore and Dr. W. Anderson Middle Tennessee State University for the Mid-State Iris Association June 3, 2008 . Why a Storm Water Fee?. City of Murfreesboro July, 2007. Why a storm water user fee?. EPA

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Water Quality Issues, Fees and Management Options' - denver


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
water quality issues fees and management options

Water Quality Issues, Fees and Management Options

Mr. L Sizemore and Dr. W. Anderson

Middle Tennessee State University for the Mid-State Iris Association

June 3, 2008

why a storm water fee

Why a Storm Water Fee?

City of Murfreesboro

July, 2007

why a storm water user fee
Why a storm water user fee?
  • EPA
  • Maintain and replace infrastructure
  • Improve stream water quality
state and epa requirements
State and EPA requirements
  • Murfreesboro
  • Designated urban area
  • EPA requires
  • MS4 program
  • Ensure water quality in local bodies of water
  • Requires milestones to met-need equipment, training, staffing
maintain replace infrastructure
Maintain & replace infrastructure
  • Infrastructure
  • In place some time
  • Pipers clog
  • Impede storm water flow
  • Open ditches gradually fill
  • Vacuum and water jet trucks
  • Replace with BMP
improve stream water quality
Improve stream water quality
  • Murfreesboro streams impaired
  • Streams may not be suitable for certain aquatic life/human recreation
  • Monitoring/research useful-aid in stream quality
  • BMP
    • Bio retention area, debris catchments, bank restoration
  • Improve water quality
public outreach education
Public outreach & education
  • Public out reach
  • Ensure water quality
  • School education program
  • Workshops
  • Low impact development
bmp improvement
BMP improvement
  • Restoration
  • Habitat
what is an impervious surface
What is an impervious surface?
  • Rainwater cannot infiltrate
  • More water volume-runoff into storm drain
  • Storm water fee
  • Median impervious area of single family residential [SFU] propertied-3,470 sq ft
what is an impervious surface10
What is an impervious surface?
  • Review of 20,000 + properties
  • $3.25 per month
  • Commercial property- how many equivalent SFUs
  • Commercial – 34,700 sq ft = 10* $3.25= $32.50
how fee billed
How fee billed?
  • SFU-added to bill
  • Apartment-bill property owner
  • Commercial- bill property owner
what is goal of storm water fee
What is goal of storm water fee?
  • Maintain water quality
  • Allow city to comply – federal-state regulations-unfunded mandate
  • Flood damage reduction/drainage
  • Long term maintenance
what is goal of storm water fee13
What is goal of storm water fee?
  • Protect water supply
  • Stream restoration
  • BMP-road construction
  • Education for schools
  • Workshops for better water quality
what can you do for clean water
What can you do for clean water?
  • Conserve water
  • Keep grass clipping out of stream
  • Keep restaurant and business waste away from rain
what can you do for clean water15
What can you do for clean water?
  • Use min herbicides/fertilizers & keep off paved surfaces
  • Pick up pet waste
  • Report water pollution
more information
More information
  • And other slide shows
  • http://www.murfreesboro.gov/government/water_sewer/stormwater.htm
rain garden rain water management option

Rain Garden Rain Water Management Option

At Middle Tennessee State University

history
History
  • This power point is the result of work completed by MTSU students in ABAS 3370 and 4370 at MTSU. Mr. L. Sizemore and Dr. W. Anderson have worked with MTSU students since Fall 2005.
what is currently used to manage rain water at mtsu
What is currently used to manage rain water at MTSU?
  • Gutters for roof runoff
  • Surface drainage ditches and an underground drainage system.
  • Ditches or tiles direct water to a central basin next to Rutherford Blvd.
what are some of the problems caused by these methods
What are some of the problems caused by these methods?
  • Petrochemicals and metals are washed off with storm runoff water.
  • Rain water and runoff water can dissolve the limestone bedrock.
location of rain gardens one two and three
Location of Rain Gardens One, Two and Three
  • Rain Garden One (2005) is near the MTSU campus greenhouse (GH)
  • Rain Garden Two (2006) is near the Horticulture Center (HC)
  • Rain Garden Three was completed in Fall 2007 in drainage ditch.
surface drain system being retrofitted with rain gardens rg
Surface Drain system being retrofitted with Rain Gardens (RG)

Greenhouse

Commons-underground drain line

RG 1&2

RG3

Basin

surface drainage ditch on campus parking lot 66
Surface drainage ditch on campus parking lot #66
  • The photo looks North toward the campus greenhouse and Rain Gardens One and Two.
  • Rain Garden Three (F-2007) has been constructed in drainage ditch
alternative ways of dealing with runoff
Alternative ways of dealing with runoff?
  • Direct water to a naturalized setting.
  • Minimize runoff of average rain by 90%, allowing rain garden (plants and soil)
  • Filter pollutants-sediments, dissolved ions- before percolates into groundwater.
what is a decentralized runoff management system
What is a decentralized runoff management system?
  • Runoff water directed into rain gardens
  • Plant canopy and soil can store excess water.
  • Rain Garden, shallow basin allows runoff water to percolate through the soil and transpire through the plants.
how does a decentralized system work
How does a decentralized system work?

Two ways:

1) Plant canopy (trees, shrubs, un-mowed grasses) A) increase evapo-transpiration

B) reduce water percolation.

2) Rain garden soil is a sponge for

runoff water

mtsu agribusiness and agriscience abas courses time line
MTSU Agribusiness and Agriscience (ABAS) courses-time line
  • ABAS 3370: Soil Analysis class began Rain Garden One the Fall 2005.
  • ABAS 4370: Soil & Water Conservation class completed Rain Garden One the Spring 2006.
mtsu agribusiness and agriscience abas courses time frame
MTSU Agribusiness and Agriscience (ABAS) courses-time frame
  • ABAS 3370 class began and finished Rain Garden Two the Fall 2006
  • Rain gardens One & Two collect runoff from gravel parking lots West and North of the Horticulture Center
  • Runoff water contains lime dust
decentralizing the pre existing drainage system at mtsu
Decentralizing the pre-existing drainage system at MTSU
  • ABAS 3370 in Fall 2007 built Rain Garden Three in the drainage ditch
    • Planted in F 2007 and Sp 2008
    • Horticultural Center to the drainage basin by Rutherford Blvd (approximately ½ mile).
  • Additional Gardens will be built in drainage ditch
surface drain system being retrofitted with rain gardens rg34
Surface Drain system being retrofitted with Rain Gardens (RG)

Greenhouse

Commons-underground drain line

RG 1&2

RG3

Basin

rain garden one
Rain Garden One
  • Deeper and longer than needed in a residential landscape
  • Why?
  • It had to fit in an existing drainage ditch surrounded by parking lots.
how to plan a rain garden
How to Plan a Rain Garden
  • Garden is down slope from the area it is draining.
  • Small rain gardens are easier to maintain than one large rain garden.
  • Garden should be greater than 10 feet from building foundation.
building rain garden two placement
Building Rain Garden Two: Placement
  • Rain Garden Two is on the East side of Horticulture Center.
  • Captures water from the graveled lot on the West side of the Horticulture Center.
other placement considerations
Other Placement Considerations
  • Do not place over a septic system or where water pools more than 5 days.
  • The garden soil should drain well.
  • How a soil drains can be determined by watching the site after a rainfall event
    • Does it drain within 2 to 3 day
    • If not infiltration and percolation rate can be estimated.
  • Clay soil or compacted soil can be amended to improve infiltration and percolation.
what is water infiltration
What is water infiltration?
  • How quickly does water move into a soil?
  • Watch a possible area after a rain fall event.
what is the percolation rate
What is the percolation rate?
  • The percolation rate is the time it takes for one inch of water to pass through a soil.
  • The ABAS class used these perc rates:

<60 minutes/inch

60-75 minutes/inch

>75 minutes/inch

  • A good rate for a rain garden is <60 minutes per inch.
how to determine percolation rate by soil texture
How to determine percolation rate by soil texture?
  • Using a post hole digger, dug holes 6 to 8 inches for a shallow basin or 24 to 36 inches for a deep basin.
  • For faster than 60 minutes per inch
    • Excavate soil has a medium or fine textures subsoil
    • Or fine reddish textured subsoil
how to determine percolation rate by soil texture continued
How to determine percolation rate by soil texture? (continued)
  • For 60 to 75 minutes per hour
    • Excavated soil is reddish fine textured subsoil to at least 24 inches and yellow clay between 24 to 36
  • For slower than 75 minutes per inch
    • Excavate soil with bed rock within 36 inches
    • or soil having a yellowish, grayish, or blackish fine textured subsoil
texture by feel flow chart
Texture by feel flow chart
  • http://soils.usda.gov/education/resources/k12/lessons/texture/
  • Fine texture soils: Sandy clay, Silty clay and clay
  • Medium texture soils: silt loam, loam, sandy clay loam, clay loam, silty clay loam
building rain garden two the percolation rate
Building Rain Garden Two: The Percolation Rate
  • Dug holes to 24 inches, excavated soil in the proposed Rain Garden, was medium textured.
  • 1” gravel in bottom, filled holes with 6” of water and record time to drop one inch. Stuck a tooth pick in the side of the hole for measuring water drop.
  • Measured, 15 minutes per ¼” water drop, or 60 minutes per 1” water.
building rain garden two sizing
Building Rain Garden Two:Sizing?
  • The size of the rain garden can be calculated.
    • Residential size: 100 to 300 sq ft
  • The size required to capture surface runoff around the HC was determined by Mr. Sizemore’s observations.
    • Dimensions: 8 feet x 24 feet by 6 inches deep
finding the area rain garden
Finding the Area Rain Garden
  • If rain garden catch water from a rain spout, use that part of the roof area.
  • Lawns, graveled or paved driveways, additional runoff water for a rain garden.
  • The area to be drained can be multiplied by a size factor to determine area of rain garden.
slide70

Size factors are determined according to the type of soil and the depth of the garden and differ if the garden is <30’ or >30’ from a building

slope relates to the depth of the rain garden
% Slope Relates to the Depth of the Rain Garden
  • For slopes <4%, the garden depth should be 3-5 inches deep.
  • Between 5-7%: 6 to 7 inches deep
  • Between 8-12%: about 8 inches deep
  • For slopes over 12%, a rain garden will take a great deal of fill, another location should be considered.
calculating the slope area of the rain garden
Calculating the Slope & Area of the Rain Garden
  • Drive two stakes about fifteen feet from each other (one uphill, one downhill).
  • Tie a string level to each stake and adjust it to make it level.
  • Measure height difference between the ground and the string in feet, divide difference by the distance between the two stakes.
  • Multiply by 100 to get the percent slope.
defining the shape of the rain garden
Defining the Shape of the Rain Garden
  • Shape should be aesthetic.
  • Recommend, length of the garden be perpendicular to the slope, will catch as much water as possible.
  • Garden should be twice as long as it is wide.
  • Width should be no more than 10-15 feet.
building mtsu rain garden two digging
Building MTSU Rain Garden Two: Digging
  • Mark the perimeter of the garden.
  • Front end loader was initially used; for residential garden use a garden tiller .
  • District conservationist (NRCS) showed the class how to measure slope with a laser level. It is easy to do with a string and line level.
  • The inlet was higher than the outlet and the bottom of the garden was leveled.
digging a rain garden
Digging a Rain Garden
  • Hammered stakes around the perimeter and ran string level between stakes across the middle of the garden.
  • Dig the bed level at the desired depth with rakes and shovels.
  • Use the removed soil to build a berm on the downhill edge of the garden.
  • Covered channel above and below inlet and outlet with landscape fabric and gravel
building rain garden two planting
Building Rain Garden Two:Planting
  • The 2006 Soil Analysis class planted native bushes and perennials.
  • The arrangement was done in a naturalistic fashion using odd number groups.
  • Odd number groups ease future maintenance of the Rain Garden.
planting a rain garden
Planting a Rain Garden
  • Rain garden plants should be tolerant of moist and dry conditions.
  • Commercial landscape plants can be used but consider native plants.
  • Plant density should be higher and more naturalistic looking than commercial type plantings.
building rain garden two mulch and rock
Building Rain Garden Two: Mulch and Rock
  • Placed landscape fabric at the entrance of the Rain Garden.
  • Covered the bottom of the Rain Garden with double-shredded mulch to the desired depth.
  • Covered the landscape fabric at the entrance with river rock.
looking south from rain garden one toward rain garden 3 before its excavation in fall 2007
Looking South from Rain Garden One toward Rain Garden 3 before its Excavation in Fall 2007

81

rain garden three specs
Rain Garden Three Specs
  • Infiltration Rate
    • 3 inches in 90 minutes
  • Depth
    • 7 inches
  • Materials Used
    • river rock, landscape fabric, recycled concrete (from construction site on campus), native plants.

82

plants used
Plants Used
  • River Oats - Chasmanthium latifolium
  • Swamp Milkweed – Ascelpias incrnata
  • Red Twig Dogwood - Cornus sericea
  • False Sunflower –Heliopsis helianthoides
  • Helberd Leaf Rose Mallow – Hibiscus laevis
  • Inkberry Holly – Ilex glabra
  • Winterberry Holly – Ilex verticillata
  • Big Blue Lobelia – Lobelia siphilitica
  • Common Rush - Juncus effusus

83

the only outlet for parking lot 66 the dark soil is a result of oil and other pollutants
The only outlet for parking lot 66. The dark soil is a result of oil and other pollutants

86

rain garden three excavation
Rain Garden Three: Excavation

Notice the normal red clay

Notice oil polluted clay

87

landscape fabric
Landscape Fabric

Although fabric is beneficial to prevent weeds, it does not allow the rock to settle. Notice how the fabric and rock washed away due to heavy rain.

91

landscape fabric correction
Landscape Fabric Correction

We corrected the problem with recycled concrete and rocks to hold the fabric in place and to slow down the water flow.

92

in summary
In Summary
  • Environmental problems caused by surface drainage in developed areas can be reduced by changing landscape practices.
  • Limit mowed lawn space and raise mower blade to increases plant canopy.
  • Stacked Rain gardens in the landscape allow excess water to infiltrate the soil in many places before water flows to lowest elevation.
plant lists
Plant Lists
  • Plant lists will be available on request from:
  • 1. your local extension office
  • 2. Tennessee Master Gardeners
  • 3. web search: rain garden plants
references
References
  • 1.) http://clean-water.uwex.edu/pubs/raingarden/
  • 2.) http://raingarden.il.gov/create.htm
  • 3.) Prince George County Bioretention Manual
  • 4.) Rain Gardens- solving drainage problems, Tennessee Gardener,
  • August 2005
  • 5.) Land Judging Guide, UTK, PB 727
  • 6.) www.cleanwaterccampaign.com/what_can_I_do/raingarden.html
  • 7.) Estimating Soil Texture, GardenNotes #214,
  • www.cmg.colostste.edu
  • 8.) Guide to Texture by Feel,
  • http://soils.usda.gov/education/resources/k_12/lessons/texture/
  • Rev 3-10-07, 3-15-07, 4-4-07,June 3, 2008
fact sheet rain garden design
Fact sheet- Rain Garden Design
  • http://www.lowimpactdevelopment.org/raingarden_design/links/htm
  • http://www.dof.virginia.gov/rfb/rain-gardens.shtml
  • http://www.utk.edu
  • Construction
  • Cost Cost of Not
  • What is a Rain Garden?
  • Man-made depression; Improve water quality
  • Bioretention area: 1.) Collect water runoff, 2.) Store it, 3.) Filtered slowly-Nutrient removal
  • How? Contact with soil and plant roots
fact sheet rain garden design 2
Fact sheet- Rain Garden Design(2)
  • Who Should Create a Rain Garden?
  • Suitable any land use; Residential, commercial, industrial
  • Place so impervious surfaces drain into depression
  • Grass buffer strip
  • Slows water entering rain garden; Surface filters particulates from runoff
  • Pond area
  • Depression area, stores water; Evaporation; Particulate not filtered to settle to bottom;
  • 6 inch depth; Not pond more than 3-4 days – avoid mosquito breeding
fact sheet rain garden design 3
Fact sheet- Rain Garden Design(3)
  • Who Should Create a Rain Garden?
  • Suitable any land use; Residential, commercial, industrial
  • Place so impervious surfaces drain into depression
  • Grass buffer strip
  • Slows water entering rain garden; Surface filters particulates from runoff
  • Pond area
  • Depression area, stores water; Evaporation; Particulate not filtered to settle to bottom;
  • 6 inch depth; Not pond more than 3-4 days – avoid mosquito breeding
fact sheet rain garden design 4
Fact sheet- Rain Garden Design(4)
  • Components of a rain garden
  • Mulch/Organic Layer
  • Decomposed organic material; Removes metals; Shredded hardwood mulch
  • Planting Soil
  • Leaf mulch (20%), sandy soil (50%) and 30% top soil; Clay particles adsorb
  • Planting Selection
  • Species that tolerate extremes, perennials
  • Site Considerations
  • Site: Intercept water runoff
  • Bioretention area: 5 to 7% of drainage area (example ¼ roof area)
fact sheet rain garden design 5
Fact sheet- Rain Garden Design(5)
  • How to Design a Rain Garden?
  • Tennessee – Murfreesboro Water and Sewer Department
  • http://www.murfreesborotn.gov/government/water_sewer/stromwater/residents.html
  • Harpeth River Rain Gardens for Backyards
  • http://www.harpethriver.org/backyard_raingardens.html
  • Maintenance: Dry, Spring
  • Plant Listshttp://www.tneppc.org
  • Local nurseries of Tennessee Nurseryman’s Association
  • Questions: Rutherford County Extension office: 898-7710
  • Brown bag lecture, 4th Thursday of each month June 21 from 11:30-12:30, 315 John Rice Blvd
ad