1 / 32

# MODEL & MATHEMATICS DR. HERI NUGRAHA. SE. MSi - PowerPoint PPT Presentation

MODEL & MATHEMATICS DR. HERI NUGRAHA. SE. MSi. WHAT IS SYSTEM MODELLING ?. Worthwhile. Recognition. Problems . Amenable. Compromise. Complexity. Definitions. Simplification. Bounding. Objectives. Hierarchy. Identification . Priorities. Goals. Generality. Solution. Family.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'MODEL & MATHEMATICS DR. HERI NUGRAHA. SE. MSi ' - denim

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

&

MATHEMATICS

DR. HERI NUGRAHA. SE. MSi

Worthwhile

Recognition

Problems

Amenable

Compromise

Complexity

Definitions

Simplification

Bounding

Objectives

Hierarchy

Identification

Priorities

Goals

Generality

Solution

Family

Generation

Selection

Modelling

Inter-relationship

Feed-back

Stopping rules

Evaluation

Sensitivity & Assumptions

Implementation

Recognition

Definition and bounding of the problems

Identification of goals and objectives

Generation of solution

MODELLING

Evaluation of potential courses of action

Implementation of results

Tipe

Konstante

Variabel

Parameter

Likelihood

Dependent

Populasi

Probability

Analitik

Independent

Maximum

Sampel

Simulasi

Regressor

Preliminary

Mathematical

Goodall

Mapping

Rules

Formal Expression

Representational

Maynard-Smith

Predicted values

Words

Homomorph

Model

Comparison

Physical

Symbolic

Data values

Simulation

Mathematical

Simplified

Distortion

Precise

Opaqueness

Abstract

Complexity

Transfer

Replacement

Communication

Basis

Choices

Types

Dynamics

Compartment

Stochastic

Multivariate

Network

MODEL DETERMINISTIK: Nilai-nilai yang diramal (diestimasi, diduga) dapat dihitung secara eksak.

MODEL STOKASTIK: Model-model yang diramal (diestimasi, diduga) tergantung pada distribusi peluang

POPULASI: Keseluruhan individu-individu (atau area, unit, lokasi dll.) yang diteliti untuk mendapatkan kesimpulan.

SAMPEL: sejumlah tertentu individu yang diambil dari POPULASI dan dianggap nilai-nilai yang dihitung dari sampel dapat mewakili populasi secara keseluruhan

PARAMETER: Nilai-nilai karakteristik dari populasi

KONSTANTE, KOEFISIEAN: nilai-nilai karakteristik yang dihitung dari SAMPEL

VARIABEL DEPENDENT: Variabel yang diharapkan berubah nilainya disebabkan oleh adanya perubahan nilai dari variabel lain

VARIABEL INDEPENDENT: variabel yang dapat menyebabkan terjadinya perubahan VARIABEL DEPENDENT.

MODEL FITTING: Proses pemilihan parameter (konstante dan/atau koefisien yang dapat menghasilkan nilai-nilai ramalan paling mendekati nilai-nilai sesungguhnya

ANALYTICAL MODEL: Model yang formula-formulanya secara eksplisit diturunkan untuk mendapatkan nilai-nilai ramalan, contohnya: MODEL REGRESI

MODEL MULTIVARIATE

EXPERIMENTAL DESIGN

STANDARD DISTRIBUTION, etc

SIMULATION MODEL: Model yang formula-formulanya diturunkan dengan serangkaian operasi arithmatik, misal:

Solusi persamaan diferensial

Aplikasi matrix

Penggunaan bilangan acak, dll.

MODELLING

SIMULATION

Equations

Dynamics

Computer

FORMAL

Language

ANALYSIS

Special

General

DYNAMO

CSMP

CSSL

BASIC

DIAGRAMS

SYMBOLS

RELATIONAL

AUXILIARY VARIABLES

LEVELS

MATERIAL FLOW

RATE EQUATIONS

PARAMETER

INFORMATION FLOW

SINK

ORIGINS

Abstraction

Equations

Steps

Computers

Hypothesis

Discriminant Function

Simulation

Other functions

Undestanding

Logistic

Exponentials

MATHEMATICS

Matrices

Eigen value

Operations

Elements

Dominant

Substraction

Multiplication

Inversion

Types

Eigen vector

Square

Rectangular

Diagonal Identity

Vectors

Scalars

Row

Column

DEVELOPMENT

Interactions

Groups

Stochastic

Materials cycles

Size

Markov Models

Development stages

STOCHASTIC

Probabilities

History

Other Models

Statistical method

Dynamics

Stability

Spatial patern

Distribution

Example

Pisson

Poisson

Negative Binomial

Binomial

Negative Binomial

Fitting

Test

Others

Basic Model

Example

Error

Estimates

Analysis

Parameter

Variance

Orthogonal

Block

Effects

Experimental

Significance

Treatments

REGRESSION

Model

Example

Error

Decomposition

Equation

Linear/ Non-linear functions

Theoritical base

Oxygen uptake

Reactions

Experimental

Empirical base

Assumptions

MARKOV

Analysis

Example

Assumptions

Analysis

Transition probabilities

Raised mire

METHODS

VARIATE

Variable

Classification

Dependent

Descriptive

Predictive

Principal Component Analysis

Discriminant Analysis

Independent

Cluster Analysis

Reciprocal averaging

Canonical Analysis

PRINCIPLE COMPONENT ANALYSIS

Requirement

Example

Correlation

Objectives

Environment

Eigenvalues

Eigenvectors

Organism

Regions

CLUSTER ANALYSIS

Example

Spanning tree

Multivariate space

Demography

Rainfall regimes

Minimum

Similarity

Distance

Settlement patern

CANONICAL CORRELATION

Example

Correlation

Partitioned

Watershed

Urban area

Eigenvalues

Eigenvectors

Irrigation regions

Discriminant function

Example

Discriminant

Calculation

Villages

Vehicles

Test

Structures

OPTIMIZATION

Dynamic

Meanings

Indirect

Non-Linear

Linear

Simulation

Objective function

Minimization

Constraints

Experimentation

Solution

Examples

Maximization

Optimum Transportation Routes

Optimum irrigation scheme

Optimum Regional Spacing

System analysis

Introduction

Processes

Model

Space

Time

Niche

Elements

Bounding

Systems

Definition

Word Models

Impacts

Factorial

Confounding

Alternatives

Separate

Combinations

Hypotheses

Data

Plotting

Outliers

Modelling

Analysis

Test

Choices

Estimates

Validation

Conclusion

Integration

Communication

HYPOTHESES

Decision Table

Relevance

Processes

Relationships

Variable

Linear

Impacts

Non-Linear

Species

Interactive

Sub-systems

Hypotheses of Relevance: Mengidentifikasi dan mendefinisikan variabel dan subsistem yang relevan dengan permasalahan yang diteliti

Hypotheses of Processes: Menghubungkan subsistem (atau variabel) di dalam permasalahan yang diteliti dan mendefinisikan dampak (pengaruh) terhadap sistem yang diteliti

Hypotheses of relationships: Merumuskan hubungan-hubungan antar variabel dengan menggunakan formula-formula matematik (fungsi linear, non-linear, interaksi, dll)

VALIDATION

Verification

Critical Test

Sensitivity Analysis

Subjectives

Uncertainty

Analysis

Resources

Objectivities

Experiments

Interactions

Reasonableness

Roles

Speed

Data

Algoritm

Introduction

Reasons

Manual

Calculator

Computer

Comparison

Speed

Techniques

Errors

Plotting

Implication

Repetition

Checking

Waste

9/10

Modelling

Data

FORTRAN

BASIC

ALGOL

Program

High level

Algoritms

Language

Machine code

DYNAMO. Etc.

Special

Information

Development

Conclusions

Programming

DATA

Cautions

Availability

Format

Sampling

Punched card

Exchange

Paper tape

Format

Reanalysis

Magnetic

Tape

Data banks

Disc

&

MATHEMATICS