1 / 19

ECE 631 ( Photonics and Devices ) Gas Laser (He-Ne)

ECE 631 ( Photonics and Devices ) Gas Laser (He-Ne). Presentation: Muhsin Caner GÖKÇE Instructor: Prof. Dr. Celal Zaim ÇİL Çankaya University Graduate School of Natural and Applied Sciences Department of Electronic and Communication Engineering. Table Of Contents. Background Information

delta
Download Presentation

ECE 631 ( Photonics and Devices ) Gas Laser (He-Ne)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 631 (Photonics and Devices) Gas Laser (He-Ne) Presentation: Muhsin Caner GÖKÇE Instructor: Prof. Dr. Celal Zaim ÇİL Çankaya University Graduate School of Natural and Applied Sciences Department of Electronic and Communication Engineering

  2. Table Of Contents • Background Information • How it works • Applications • Technical Properties • Pulse Mode (recent Improvements)

  3. Background information Inventions: • 1954 Gordon, Zeiger, Townes: Maser • 1960 Maiman: Ruby-Laser (Al2O3, Solid) • 1961 Helium-Neon Laser (Gas) by Ali Javan in Bell Telephone Laboratories, USA • 1962 Semiconductor-Laser • 1985 Rontgen(X-ray)-Laser

  4. Background information • It is a four level atom laser with a mixture of helium and neon(helium to neon (typically around 7:1 to 10:1) at a pressure of between 2 and 5 Torr (atmospheric pressure is about 760 Torr)). • It operates in Continuous Working (CW) mode(the Helium-Neon laser was the first continuous laser). • Superior beam quality(Gaussian irradiance profile, long coherence length, low divergence angle).

  5.  How It Works

  6.  How It Works Excited levels of Helium at 20.61 eV is very close to a level in Neon at 20.66 eV Collision of a helium with neon atom, the energy can betransferred from the Helium to the Neon atom.

  7.  How It Works Neon is the lasing gas Visible light and IR Fast radiative transition (spontaneous) The lifetime of s-states is order longer than p states Relevant energy levels of the He-Ne laser. (Ref: Principles of Lasers Orazio Svelto 5. edition)

  8.  Applications Red (6328 Å) (Most Common) Yellow (594 nm) (Not efficient) Orange (604.6 and 611.9 nm) (Not Efficient) Green (543.5 nm) (Not efficient) Infrared (1,523.1 nm) (Fiber optic testing) Types of wavelengths

  9.  Applications Some of the important applications of He-Ne lasers: • Free-space optical communications • Bar-code scanners • Hologram generation • Fiber Optic Experimentation • Construction of laser light show • Surveillance (ie. audio surveillence) • Tachometer (measuring the rotation speed of a shaft or disk) • Burglar alarm • Gyroscope • Alignment • Interferometry (extracting information about the waves) • Laser printers

  10.  Technical Properties Totally reflective mirror Cavity Length (L) 2-5 Torr Rb =75 kΩ Partially reflective mirror 1.2 to3 kV DC Since the discharge has a negative resistance, a ballast resistance is to be used in series with the laser to make the overall impedance positive

  11.  Technical Properties FWHM:Gain is at least half of the peak value

  12. CVI Melles Griot Company TEM00  Technical Properties Maximum output is 100mw Long Life (More than 10,000hours) Low divergence angle Rugged, compact and less expensive

  13. CVI Melles Griot Company(TEM00)  Technical Properties

  14. CVI Melles Griot Company TEM00  Technical Properties

  15.  Technical Properties CVI Melles Griot Company TEM00

  16. Pulse Modes Mode Locking: is a technique which converts CW beam to a periodic series of very short pulsesfrom picoseconds to a nanosecond.  Advantages: • High power pulse • All the cavity modes are forced to be in phase Disadvantages: Implementation is diffucult

  17. Pulse Modes (Recent Improvements) Applications: • Photon excitation microscopy • Nuclear fusion • 3D optical data storage • Metal Forming Nano structure

  18. References • (Ref: Principles of Lasers 2010, Orazio Svelto 5. edition page: 444-460) • http://www.cvimellesgriot.com/ • http://www.repairfaq.org/sam/laserhen.htm#henhlc0 • http://www.worldoflasers.com/lasertypes2.htm • ECE 631 lecture notes: http://ece631.cankaya.edu.tr • http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/lasgas.html#c1 • http://www.fou.uib.no/fd/1996/h/404001/kap04.htm

  19. Thanks for Your Attention

More Related