Y f x x y
This presentation is the property of its rightful owner.
Sponsored Links
1 / 52

將合於 y = f ( x ) 關係的所有點 ( x , y ) 在坐標平面上描畫出來, 所得到的圖形就是函數圖形。 PowerPoint PPT Presentation


  • 46 Views
  • Uploaded on
  • Presentation posted in: General

設 y = f ( x ) 為一函數,我們可以將函數中每個自變數 x 的值當作橫坐標,它所對應的函數值 f ( x ) 當作縱坐標,就可以構成許多點坐標 ( x , y ) ,將這些點坐標逐一畫在坐標平面上,就可以完成該函數的圖形,我們稱之為函數 f ( x ) 的圖形。. 將合於 y = f ( x ) 關係的所有點 ( x , y ) 在坐標平面上描畫出來, 所得到的圖形就是函數圖形。. 將自變數 x 的值當作橫坐標,其對應的函數值 f ( x ) 當作縱坐標,

Download Presentation

將合於 y = f ( x ) 關係的所有點 ( x , y ) 在坐標平面上描畫出來, 所得到的圖形就是函數圖形。

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Y f x x y

  • yf (x) x f (x)(x , y)

  • f (x)

yf (x)(x , y)


Y f x x y

x f(x)

(1 , 31)(2 , 28)(3 , 31)(4 , 30)(5 , 31)

(6 , 30)(7 , 31)(8 , 31)(9 , 30)(10 , 31)

(11 , 30)(12 , 31)

  • x f (x)yf (x)


Y f x x y

  • 10 x f (x) x yf (x)


Y f x x y

  • 97 3 20


Y f x x y

  • x y

  • x y

  • 7 3.3C12

  • 5.3C y x

  • yf (x) f (x)

  • 97 3 20


Y f x x y

x y

(

2 24 35 )

(0 , 1.5)(1 , 2.2)(24 , 0.4)


Y f x x y

  • 2 y3x1 y3x1 yf (x)3x1

  • yf (x)3x1 y3x1 yf (x)3x1


Y f x x y

yf (x)3x1

x f (x)

(0 , 1)(2 , 5)(0 , 1)

(2 , 5)

yf (x)3x1

  • yf (x)3x1


Y f x x y

  • yg (x)2x3


Y f x x y

  • 2 yf (x)3x1 x f (x)axb(a0) f (x)2x3g (x)x5h (x)4x9


Y f x x y

  • x y 1000 1000 x y


Y f x x y

  • x y y x y 1000 y1000 f (x)1000( f (x)b)


Y f x x y

yf(x)3

x

f (x)(0 , 3)

(1 , 3)(0 , 3)(1 , 3)

yf (x)3

  • yf (x)3


Y f x x y

  • yg (x)5


Y f x x y

  • 2 3

f (x)axb (ab )

a0 f (x)axb

a0f (x)b


Y f x x y

  • f (x)axb 1 152

  • yf (x)x21 x21012f (x)


Y f x x y

  • (2 , 5)(1 , 2)(0 , 1)(1 , 2)(2 , 5) yf (x)x21


Y f x x y


Y f x x y

yf (x) yf (x)

(0 , 4)(1 , 1)

yf (x)

  • yf (x)(0 , 4)(1 , 1) yf (x)


Y f x x y

  • yf (x)axb

  • (0 , 4)(1 , 1)

  • x0 f (0)a0b4

  • x1 f (1)a(1)b1

  • b4a3 f (x)3x4


Y f x x y

  • yf (x)(7 , 3) f (x)

yf (x)b

(7 , 3)

x7 f (7)b3 b3

f (x)3


Y f x x y

  • yf (x)(2 , 3)(1 , 1)(0 , 3)(1 , 1)(2 , 2)(3 , 0) f (3)f (1)f (0)f (2)

f (3)0f (1)1f (0)3f (2)3

f (3)f (1)f (0)f (2)0(1)331


Y f x x y

  • yf (x)(5 , 4)

  • (3 , 1)(1 , 0)(0 , 3)(1 , 1)(4 , 5) f (3)f (1)f (1)f (4)

f (3)1f (1)0f (1)1f (4)5

f (3)f (1)f (1)f (4)10(1)53


Y f x x y

  • yf (x)3x5

  • yg (x)ax5

  • P(2 , b) ab

P(2 , b) yf (x)3x5

x2 yf (2)3251 b1

P (2 , 1)

P(2 , 1) yg (x)ax5

x2 yg (2)2a51 a2

a2b1


Y f x x y

  • yf (x)2xb

  • yg (x)x2

  • P (a , 4) ab

P (a , 4) yg (x)x2

xa yg (a)a24 a2

P (2 , 4)

P(2 , 4) yf (x)2xb

x2 yf (2)22b4 b8

a2b8


Y f x x y

f (x)ax3

(0 , 3) y x

a0 x y

(A)

  • f (x)ax3 a0


Y f x x y

  • f (x)ax5 a0

(D)


Y f x x y

  • 7 x f (x)

  • 7 x f (x)


Y f x x y

  • y x

  • xy


Y f x x y

  • y x

  • yf (x)axb

  • (3 , 1800)(9 , 720)

  • x3 f (3)3ab1800

  • x9 f (9)9ab720

  • 6a1080a180

  • a180 b2340

  • xy yf (x)180x2340

  • yf (x)0

  • 0180x2340 x13

  • 13


Y f x x y

x0 f(0)2340 2340

23401170

1170180x2340 x6.5

90630

  • 8


Y f x x y

  • 8

  • x y

  • x y

  • xy

  • 8


Y f x x y

  • x y

  • yf (x)axb

  • (0 , 8)(32 , 0)

  • x0 f (0)0ab8

  • x32 f (32)32ab0

  • b8

  • b8 a

  • xy yf (x) x8

  • 8 x8

  • f (8) 886

  • 8 6


Y f x x y

yf (x)

yf (8) 8

8

  • 9

  • x y

  • x y

  • xy

  • 8


Y f x x y

  • x yf (x) yf (x)


Y f x x y

  • f (x)axb (ab ) a0 f (x)axb a0 f (x)b

  • f (x)3x1g (x)5x3

  • h (x)6k (x)1


Y f x x y

(D)

  • (A) f (x)2x9(B) f (x)5

  • (C) f (x)x(D) f (x)x2


Y f x x y

  • f (x)axb (ab )

  • (A) a0b0 f (x)

  • (B) a0b0 f (x)

  • (C) a0b0 f (x)

  • (D) a0b0 f (x)

(D)


Y f x x y

  • yf (x)2x5


Y f x x y

  • yf (x)3


Y f x x y

  • f (x)(2 , 0)(3 , 3)

  • (4 , 1)(5 , 3) g (x)(2 , 4)(3 , 1)(4 , 0)(5 , 5)f (2)g (3)f (4)

  • g (5)

f (2)0g (3)1f (4)1g (5)5

f (2)g (3)f (4)g (5)0(1)155


Y f x x y

  • yf (x)(1 , 1)

  • (3 , 7)

  • (k , 2) k

yf (x)axb

(1 , 1)(3 , 7)

x1 f (1)ab1

x3 f (3)3ab7

a3b2

f (x)3x2

f (k)2

3k223k0

k0


Y f x x y

  • 35 48 60 68

  • 90

  • 80


Y f x x y

  • yf (x)axb

  • (35 , 48)(60 , 68)

  • x35 f (35)35ab48

  • x60 f (60)60ab68

  • a45b20

  • f (x) 20

  • x90 f (90) 902092

  • 92

  • yf (x)80 2080

  • x75

  • 75


Y f x x y

  • 21 Excel

  • y x yf (x)3x6

  • 1 A1

  • x B1

  • y

  • x y


Y f x x y

  • 2 A2

  • x

  • 2

  • B2

  • 3A26

  • B2 y


Y f x x y

  • x y A2 5 B2 y 21

  • Excel


  • Login