1 / 24

Synthesis and Characterisation of Lithium Graphite Intercalation Compound Anode Materials

Synthesis and Characterisation of Lithium Graphite Intercalation Compound Anode Materials. Du Sihong June 22, 2011. Petroleum Coke. Graphite electrodes. Disadvantage [1-3]. Low initial columbic efficiency Poor cycle life. Advantage [1-3]. Theory Capacitance 372mAh/g Voltage

decima
Download Presentation

Synthesis and Characterisation of Lithium Graphite Intercalation Compound Anode Materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Synthesis and Characterisation of Lithium Graphite Intercalation Compound Anode Materials Du Sihong June 22, 2011

  2. Petroleum Coke Graphite electrodes Disadvantage[1-3] Low initial columbic efficiency Poor cycle life Advantage[1-3] Theory Capacitance 372mAh/g Voltage 0-0.25V Lamellar structure High specific capacity Low working potential Rich in raw materials Non-pollution 0.1mm-0.25mm Solid-electrolyte interphase (SEI) layer Irreversible reaction Needle Coke [1] Daliang Liu, Fei Du, etc. Journal of Materials Letters, 2009 [2] Feng Wang, Jason Graetz, etc., J ASCNano, 2011 MCMB

  3. Potential of the anode/cathode material for lithium batteries Theory Capacitance 372mAh/g Voltage 0-0.25V [3] The chart made by Ping Lina, April, 28,2010

  4. Petroleum Coke Graphite electrodes Disadvantage[1-3] Low initial columbic efficiency Poor cycle life Advantage[1-3] Theory Capacitance 372mAh/g Voltage 0-0.25V Lamellar structure High specific capacity Low working potential Rich in raw materials Non-pollution 0.1mm-0.25mm Solid-electrolyte interphase (SEI) layer Irreversible reaction Needle Coke [1] Daliang Liu, Fei Du, etc. Journal of Materials Letters, 2009 [2] Feng Wang, Jason Graetz, etc., J ASCNano, 2011 MCMB

  5. Action:Improment of Graphite anode materials Lithium in Intercalated Graphite(Li-GIC) 防止电解液本体离子浓度的降低,抑制不可逆容量损失 D.Aurbach Y.Ein-Eli, etc. FTIR/XPS/Electrochemical methods 形成有效SEI膜,防止溶剂的共嵌入效应,保护电极 The Goal 提高电导率,减小极化,使电位趋于稳定、平坦 防止阴离子在正极的不可逆吸附 改善电容器充放电特性,提高电容量 小飞守角制作

  6. Contains Introduction of the Graphite Intercalation Compound The Plan for My Experiment Feasibility Study 小飞守角制作

  7. Graphite Intercalation Compound(GIC) 石墨层间化合物[4]:是一种利用物理或化学的方法使非碳质反应物 ( 原子、 分子、 离子或粒子团) 插人到石墨层问,和其六角网络平面结合的同时又保持了石墨层状结构的晶体化合物。 新化合物在晶体结构上的特点是外来反应物形成了独立的插人物层,并在石墨的c轴方向形成超点阵,在结构尺度上, GIC是一种纳米级复合材料。 Definition GIC Features [4] 康飞宇. 关于GIC研究的几点见解.Journal of Carbon Techniques, 2000:109(4), 17-20 小飞守角制作

  8. Mechanism of Li-GIC T.Ohzuku etc. Graphite Stage4 Stage1* Stage3 Stage1 Stage2 Stage2L Stage2 Stage1 Stage2 Stage2L Stage3 Stage2 Stage4 Stage2 Tsufomu Ohzuku, Yasunobu lwakoshi, etc. J. Electrochem. Soc 1993 小飞守角制作

  9. 超高贮锂炭材料的嵌锂机理 A.Mabuchi, etc. 小飞守角制作

  10. Composite Methods 合成过程:将石墨和辅助阳极一起构成阳极室浸泡在插层剂电解液中,通以直流或脉冲电流,经过一定的氧化时间后取出,水洗干燥后即可得到GIC纳米复合材料。 优点:通过控制反应的电化学参数(电流、电 位,电量等)可以有效地控制反应的速度以及所生成GIC纳米复合材料的阶结构。 合成过程:将氧化剂与浓硫酸按一定比例配成氧化酸液,把鳞片石墨浸泡其中,使硫酸根离子插入石墨层间与已经被氧化的碳原子相结合,合成GIC。 优点:反应速度很决,设备成本低,石墨膨胀的效果好。 缺点:大量使用强氧化剂,易产生过氧化反应;反应速度太快,难以控制产物的阶结构。 合成过程:在一个真空密封耐热玻璃管的两端分别放置石墨和插层物,用两组电炉控制温度,使石墨和气相的插层物发生插层反应。 优点:精确控制反应室两端的温度可以获得组成和阶结构比较均匀的产物。 缺点:反应要求较高的温度和时间;难以进行大批量生产。 化学法 电化学法 双室法 小飞守角制作

  11. The preparation of a stage-2 Co-GIC Intercalation of pristine CoCl2 into a single crystal of kish graphite in a Cl2 gas atmosphere at 740 Torr/98.420KPa for three weeks at 540 ℃ 小飞守角制作

  12. 原料:天然鳞片石墨(d ﹤400nm)和金属钾 合成路径: 反应2-3天 插层物室 金属钾 浅棕色K-GIC粉末 石墨研磨 石墨室 控温400 ℃ 控压1.33Pa 控温250 ℃ 控压1.33Pa 小飞守角制作

  13. 熔盐法合成FeCl3—CuCl2三元石墨插层化合物 Nature Graphite FeCl3 Power CuCl2 Power 真空密封熔融 T=350 ℃ t=8h drying washing Fe-Cu-GIC 小飞守角制作

  14. 电化学法合成FeCl3—ZnCl2三元石墨插层化合物 Anode Electrolyte 55gFeCl3-70gZnCl2-36mlH2O Nature Graphite Cathode 恒电流密度100mA/cm2 t=2h drying T=80 ℃ t=0.5h washing Stage4 Fe-Zn-GIC 小飞守角制作

  15. Liquid-solid reaction Including several successive steps: Purification of the reagents Formation of the reactive alloy Reaction and sample recovery [5] Sebastien Pruvost, Claire Herold, etc. European Journal of Inorganic Chemistry 小飞守角制作

  16. lithium–europium alloy 10 days pyrolytic graphite EuC6 T=350 ℃ T=350℃ Li/Eu = 2.5 小飞守角制作

  17. 小飞守角制作

  18. The Plan for My Experiment Main Material Design of experiment The plan for future Main work

  19. Design of Experiment Program One: Electrochemically lithiated synthetic graphite-Organic Anode Cathode Electrolyte Nature Graphite EC/ DMC =1:1 lithium metal 恒电流密度20mA/g 电压2.5-0V Li-GIC Question: How to magnify this method to realize industry ? 小飞守角制作

  20. Program Two: Electrochemically lithiated synthetic graphite- hydrographic net 1.电化学反应槽 2.阳极板 3.阴极板 4.可渗透隔离板框架 5.石墨 6.电解液 7直流电源 8.加压重锤 9.搅拌器 [5] 康飞宇,清华大学,膨胀石墨制造方法及其装置,发明专利,1992 小飞守角制作

  21. Program Three: Liquid-solid reaction 2-5h Lithium 180 ℃ pyrolytic graphite LiC6 T=200 ℃ Question: Come it through ? The conditions for the reaction? T=180-200℃ 小飞守角制作

  22. Feasibility Study

  23. Improve the programs Future Works Electrochemical methods Analyse Experiment Feasibility Study www.themegallery.com

  24. Concept: Thanks To Everybody !!! “I Always Consider The Specialty 、Speed、 Efficiency、And Try My Best To Get It” End & Thanks

More Related