This presentation is the property of its rightful owner.
Sponsored Links
1 / 87

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика PowerPoint PPT Presentation


  • 166 Views
  • Uploaded on
  • Presentation posted in: General

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика. ТЕМА 10. ТЕОРИЯ ЭКОНОМИЧЕСКОГО РОСТА. Основные вопросы. Экономический рост: содержание, показатели. Важнейшие факторы и типы экономического роста. Кейнсианская модель экономического роста Харрода-Домара.

Download Presentation

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


1 3

() 1.3.


1 3

10.


1 3

  • : , .

  • .

  • -.

  • . .


1 3

1. : ,


1 3

  • - ,

  • ,

  • ,

  • ,

  • .


1 3

  • ,

  • .


1 3

( )

  • ( ),

  • ( ),

  • ( ),

  • ( ),

  • ( : , ).


1 3

  • ,

  • .


1 3

(.)

yt ()

t,

Yt ,

Yt-1 ,

t ().


1 3

  • , " ",

  • ( ).


1 3

(.)

Yt = Y0 (1 + ya)T

  • ya- ( )

  • Y0 - ,

  • Yt- t,

  • T ( )


1 3

" 70"

ya% , 70/ya .

:

  • 3% , 23 .

  • 10 , 7% .


1 3

" "

  • ,

  • .


1 3

  • .

  • .


1 3

Y

( )

() t

(.)


1 3

A

PPF2

PPF1

( )


1 3

A

PPF2

PPF1

( )


Ad as

P

P2

P1

ASLR1

ASLR2

AD2 AS2

AD1 AS1

Q1 Q2 Q

AD-AS


1 3

2.


1 3

  • , ,

  • .


1 3

  • , .


1 3

1

  • ,

  • ,

  • .


1 3

2

  • ,

  • ,

  • ,

  • ,

  • .


1 3

  • ,

  • ,

  • ,

  • ,

  • .


1 3

Y t = A t F(L t , K t )

  • A t ,

  • L t ,

  • K t .


1 3

( )

, ()

  • .


1 3

(.)


1 3

  • ,

  • .


1 3

  • , ,

  • .


1 3

  • ,

  • .


1 3

  • , , , .


1 3

  • , ,

  • ,

  • .


1 3

1. :

  • ,

  • ,


1 3

(.)

2. :

  • ,

  • ,

  • , ,

  • : , , .


1 3

(.)

3. :

  • ,

  • ,

  • , , .


1 3

1. :

  • , , , ,

  • , .


1 3

(.)

2. :

  • ,

  • , ,

  • , , ,

  • , , ,

  • .


1 3

(.)

3. :

  • ,

  • ,

  • , ,

  • , , .


1 3

3. -


1 3

  • , , ,

  • (S=I),

  • ( ) (Y = K ).


1 3

()

  • (), .

    (2)


1 3

  • :

    (3)

  • = I

    (4)

    (5)


1 3

  • S = I = SY Y (6)

    SY -

  • (6) (5) :

    (7)


1 3

-

  • () .


1 3

  • .


1 3

  • () , .


1 3

-

  • , ,

  • .


1 3

4. .


1 3


1 3

.

  • ,

  • ,

  • -,

  • ,


1 3

. (.)

  • ,

  • ,

  • ,

  • ,

  • .


1 3

4.1. .

  • Y = F (K, L) (1)

  • zY = F (zK, zL) (2)

  • Y/L = F (K/L, 1) : y =f(k) (3)

  • y = Y/L - ,

  • k = K/L - , .


1 3

(.)

  • (3) - ,

  • .


1 3

y

MPK

f(k)

1 k

( )


1 3

( )

  • .

  • = f(k+1) f(k)


1 3

  • AD = C + I

  • Y = C + I : y = c + i (4)

  • c ,

  • i .


1 3

  • c = (1 s) y (5)

  • s ( ),

  • (1 s) ( ).


1 3

  • y = (1 s) y + i (6)

  • i = s y (7)

  • .


1 3

  • .

  • , , .


1 3

4.2.

  • i = s f(k) (8)

  • = f(k) s f(k) (9)


1 3

y,

i,

c

f(k)

s f(k)

i

k


1 3

D = d k (10)

  • d - ,

  • k - .

  • (D) .


1 3

(k)

  • .

  • k = i dk (11)

  • k = s f(k) dk (12)


1 3

4.3.

  • ,

  • ,

  • .

    s f(k) = dk k = 0


1 3

i,

dk

i=dk

dk

i<dk

E

s f(k)

i>dk

k1 kE k2 k

(.)


1 3

4.4.

  • .

  • , .


1 3

i,

dk

i = dk

iA >dkE

i = dk

dk

E

E

s f(k)

s f(k)

kE k k


4 5 k e

4.5. (kE*)

  • ,

  • (*).


1 3

  • :

    = f(kE) dkE(13)

    y = c + ic = y i

    y = f(kE), i = dkE


1 3

y,

dk

dkE

f(kE)

*

kE* kE


1 3

(.)

  • kE* ,

  • * ,

  • kE* .


1 3

()

  • = f(k+1) f(k) (14)

  • () :

    = - d (15)


1 3

() (.)

  • : , (*),

  • .

    = d(16)


1 3

4.6.

  • k = i dk nk (17)

  • k = s f(k) (d + n)k (18)

  • , .


1 3

  • , ,

  • .

    s f(k) = (d + n)kk = 0 (19)


1 3

i,

(d+n)k

i =(d+n)k

(d+n)k

i < (d+n)k

E

s f(k)

i >(d+n)k

k1 kE k2 k

(.)


1 3

= f(kE) (d + n)kE(20)


1 3

  • , (*),

  • .

    MPK = d + n (21)


1 3

4.7.

Y = F(K, L) (22)

  • (L) - , .

  • .

  • (g).

  • (n + g).


1 3

(.)

  • (k):

    , .

    k = K/(LE) y = Y/(LE)

  • y = f(k) (23)

    .


1 3

  • , , , :

    k = s f(k) (d + n + g)k (24)


1 3

i,

(d+n+g)k

i = (d+n+g)k

(d+n+g)k

E

s f(k)

kE k


1 3

(.)

  • ,

  • , .

    s f(k) = (d + n + g)kk = 0

    (25)


1 3

= f(kE) (d + n + g)kE (26)


1 3

  • , (*),

  • .

    MPK = d + n + g (27)


1 3


And good luck

and Good Luck !


  • Login