Download
1 / 87

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика - PowerPoint PPT Presentation


  • 195 Views
  • Uploaded on
  • Presentation posted in: General

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика. ТЕМА 10. ТЕОРИЯ ЭКОНОМИЧЕСКОГО РОСТА. Основные вопросы. Экономический рост: содержание, показатели. Важнейшие факторы и типы экономического роста. Кейнсианская модель экономического роста Харрода-Домара.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha

Download Presentation

«Современные проблемы экономической науки» (магистратура) Раздел 1.3. Макроэкономика

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


1 3

() 1.3.


1 3

10.


1 3

  • : , .

  • .

  • -.

  • . .


1 3

1. : ,


1 3

  • - ,

  • ,

  • ,

  • ,

  • .


1 3

  • ,

  • .


1 3

( )

  • ( ),

  • ( ),

  • ( ),

  • ( ),

  • ( : , ).


1 3

  • ,

  • .


1 3

(.)

yt ()

t,

Yt ,

Yt-1 ,

t ().


1 3

  • , " ",

  • ( ).


1 3

(.)

Yt = Y0 (1 + ya)T

  • ya- ( )

  • Y0 - ,

  • Yt- t,

  • T ( )


1 3

" 70"

ya% , 70/ya .

:

  • 3% , 23 .

  • 10 , 7% .


1 3

" "

  • ,

  • .


1 3

  • .

  • .


1 3

Y

( )

() t

(.)


1 3

A

PPF2

PPF1

( )


1 3

A

PPF2

PPF1

( )


Ad as

P

P2

P1

ASLR1

ASLR2

AD2 AS2

AD1 AS1

Q1 Q2 Q

AD-AS


1 3

2.


1 3

  • , ,

  • .


1 3

  • , .


1 3

1

  • ,

  • ,

  • .


1 3

2

  • ,

  • ,

  • ,

  • ,

  • .


1 3

  • ,

  • ,

  • ,

  • ,

  • .


1 3

Y t = A t F(L t , K t )

  • A t ,

  • L t ,

  • K t .


1 3

( )

, ()

  • .


1 3

(.)


1 3

  • ,

  • .


1 3

  • , ,

  • .


1 3

  • ,

  • .


1 3

  • , , , .


1 3

  • , ,

  • ,

  • .


1 3

1. :

  • ,

  • ,


1 3

(.)

2. :

  • ,

  • ,

  • , ,

  • : , , .


1 3

(.)

3. :

  • ,

  • ,

  • , , .


1 3

1. :

  • , , , ,

  • , .


1 3

(.)

2. :

  • ,

  • , ,

  • , , ,

  • , , ,

  • .


1 3

(.)

3. :

  • ,

  • ,

  • , ,

  • , , .


1 3

3. -


1 3

  • , , ,

  • (S=I),

  • ( ) (Y = K ).


1 3

()

  • (), .

    (2)


1 3

  • :

    (3)

  • = I

    (4)

    (5)


1 3

  • S = I = SY Y (6)

    SY -

  • (6) (5) :

    (7)


1 3

-

  • () .


1 3

  • .


1 3

  • () , .


1 3

-

  • , ,

  • .


1 3

4. .


1 3


1 3

.

  • ,

  • ,

  • -,

  • ,


1 3

. (.)

  • ,

  • ,

  • ,

  • ,

  • .


1 3

4.1. .

  • Y = F (K, L) (1)

  • zY = F (zK, zL) (2)

  • Y/L = F (K/L, 1) : y =f(k) (3)

  • y = Y/L - ,

  • k = K/L - , .


1 3

(.)

  • (3) - ,

  • .


1 3

y

MPK

f(k)

1 k

( )


1 3

( )

  • .

  • = f(k+1) f(k)


1 3

  • AD = C + I

  • Y = C + I : y = c + i (4)

  • c ,

  • i .


1 3

  • c = (1 s) y (5)

  • s ( ),

  • (1 s) ( ).


1 3

  • y = (1 s) y + i (6)

  • i = s y (7)

  • .


1 3

  • .

  • , , .


1 3

4.2.

  • i = s f(k) (8)

  • = f(k) s f(k) (9)


1 3

y,

i,

c

f(k)

s f(k)

i

k


1 3

D = d k (10)

  • d - ,

  • k - .

  • (D) .


1 3

(k)

  • .

  • k = i dk (11)

  • k = s f(k) dk (12)


1 3

4.3.

  • ,

  • ,

  • .

    s f(k) = dk k = 0


1 3

i,

dk

i=dk

dk

i<dk

E

s f(k)

i>dk

k1 kE k2 k

(.)


1 3

4.4.

  • .

  • , .


1 3

i,

dk

i = dk

iA >dkE

i = dk

dk

E

E

s f(k)

s f(k)

kE k k


4 5 k e

4.5. (kE*)

  • ,

  • (*).


1 3

  • :

    = f(kE) dkE(13)

    y = c + ic = y i

    y = f(kE), i = dkE


1 3

y,

dk

dkE

f(kE)

*

kE* kE


1 3

(.)

  • kE* ,

  • * ,

  • kE* .


1 3

()

  • = f(k+1) f(k) (14)

  • () :

    = - d (15)


1 3

() (.)

  • : , (*),

  • .

    = d(16)


1 3

4.6.

  • k = i dk nk (17)

  • k = s f(k) (d + n)k (18)

  • , .


1 3

  • , ,

  • .

    s f(k) = (d + n)kk = 0 (19)


1 3

i,

(d+n)k

i =(d+n)k

(d+n)k

i < (d+n)k

E

s f(k)

i >(d+n)k

k1 kE k2 k

(.)


1 3

= f(kE) (d + n)kE(20)


1 3

  • , (*),

  • .

    MPK = d + n (21)


1 3

4.7.

Y = F(K, L) (22)

  • (L) - , .

  • .

  • (g).

  • (n + g).


1 3

(.)

  • (k):

    , .

    k = K/(LE) y = Y/(LE)

  • y = f(k) (23)

    .


1 3

  • , , , :

    k = s f(k) (d + n + g)k (24)


1 3

i,

(d+n+g)k

i = (d+n+g)k

(d+n+g)k

E

s f(k)

kE k


1 3

(.)

  • ,

  • , .

    s f(k) = (d + n + g)kk = 0

    (25)


1 3

= f(kE) (d + n + g)kE (26)


1 3

  • , (*),

  • .

    MPK = d + n + g (27)


1 3


And good luck

and Good Luck !


ad
  • Login