Ave Maria University
This presentation is the property of its rightful owner.
Sponsored Links
1 / 57

Yong Cai Department of Chemistry & Biochemistry and Southeast Environmental Research Center PowerPoint PPT Presentation


  • 77 Views
  • Uploaded on
  • Presentation posted in: General

Ave Maria University January 25 , 2010. Mercury in the Florida Everglades. Yong Cai Department of Chemistry & Biochemistry and Southeast Environmental Research Center Florida International University Miami, FL. Research Team. Florida International Universit y

Download Presentation

Yong Cai Department of Chemistry & Biochemistry and Southeast Environmental Research Center

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Yong cai department of chemistry biochemistry and southeast environmental research center

Ave Maria University

January 25, 2010

Mercury in the Florida Everglades

Yong CaiDepartment of Chemistry & Biochemistry and

Southeast Environmental Research Center

Florida International UniversityMiami, FL


Research team

Research Team

Florida International University

Cai Group (Guangliang Liu, Damaris Hernandez, Yuxiang Mao, Sandra Zapata, Julio Cabrera)

J. Richards, Len Scinto, Joel Trexler, T. Philippi, Evelyn Gaiser

SERC Lab (Joseph Boyer)

Many others

US EPA Region 4

Pete Kalla

Charles Appleby

Daniel Scheidt

K. Thornton

Field sampling team and lab support personnel

University of Georgia

M. Madden


Background

The Everglades

Background

  • One of the largest freshwater marshes in the world

  • The masrch is a unique mosaic of sawgrass, wet prairries, sloughs, and tree islands.

  • Became a troubled system during last century

    • Central and Southern Florida Flood Control Project (created in 1948 by Fed. legislation)

    • Population increase (500K in 1950s, ~2 millions in 2000)

  • Today, 50% of historic Everglades wetland have been drained.


Background1

Background

The Everglades


Background2

Background

The Comprehensive Everglades

Restoration Plan (CERP)

The Restudy:Central & Southern Florida Project

The Comprehensive Everglades Restoration Plan provides a framework and guide to restore, protect, and preserve the water resources of central and southern Florida, including the Everglades


Background3

Background

The Comprehensive Everglades

Restoration Plan (CERP)

  • The world's largest ecosystem restoration effort and includes more than 60 major components.

  • Because the region's environment and economy are integrally linked, the Plan provides important economic benefits.

  • Will result in a sustainable south Florida by restoring the ecosystem, ensuring clean and reliable water supplies, and providing flood protection.

# Cost $11 billion in 30 years to implement


Background4

Background

The Everglades Ecosystem

Assessment Program (The program)

Goal

Provide timely ecological information that contributes to the environmental management decision on Everglades protection and restoration


Background5

The Everglades Ecosystem

Assessment Program (The program)

Background

More specifically, the program contributes to Everglades phosphorus and mercury control effort and CERP by

  • Quantifying pre-restoration conditions in the marsh during 1995, as well as conditions subsequent to the initiation of restoration later in 1990s;

  • Assessing the effects and relative potential risk of multiple environmental stressors on the Everglades ecosystem, such as water management, soil loss, water quality degradation, and nutrient enrichment, habitat loss, and mercury contamination;

  • Permitting spatial analyses and identifying associations that provide insight into relationships among environmental stressors and observed ecological responses

  • …….


Background6

The Everglades Ecosystem

Assessment Program (The program)

Background

A Unique program that combines

several key aspects of scientific study,

  • Probably-based sampling design, which permits quantitative statements across space about ecosystem conditions;

  • Multi-media scope;

  • Extensive spatial coverage

Program History

USEPA and FIU began this program in 1993

Three phases have been completed (Phase I: 1993-1995; Phase II: 1999; Phase III: 2005)


Where hg comes from

Where Hg comes from

Area source: 3.4 ton/yr

Combustion: 137 ton/yr

Oil

Coal

Natural Gas

Municipal waste

Miscellaneous: 1.4 ton/yr

Manufacturing: 15.6 ton/yr


Yong cai department of chemistry biochemistry and southeast environmental research center

http://www.ec.gc.ca/MERCURY/EH/EN/eh-b.cfm#MM


Mercury and human health

Mercury and Human Health

  • One in six U.S. women of reproductive age might have mercury levels in their body that could put their babies at risk

  • More than 600,000 infants are born each year with blood mercury levels that might cause heart damage and irreversible impairment to brain function in children

  • Lower IQ levels resulting from mercury exposure in utero is estimated to cost the U.S. economy $8.7 billion a year in lost earning potential


Mercury and human health1

Mercury and Human Health

  • Humans risk ingesting dangerous levels of mercury by eating contaminated fish.

  • Once in the human body, mercury acts as a neurotoxin, interfering with the brain and nervous system.

  • In adults, mercury poisoning can adversely affect fertility and blood pressure regulation and can cause

    • memory loss

    • Tremors

    • vision loss

    • numbness of the fingers and toes

    • heart disease

  • Exposure to mercury can be particularly hazardous for pregnant women and small children. Mercury exposure can cause

    • mental retardation

    • cerebral palsy

    • deafness and blindness

    • delaying walking and talking

    • learning disabilities


Yong cai department of chemistry biochemistry and southeast environmental research center

http://www.ec.gc.ca/MERCURY/EH/EN/eh-b.cfm#MM


Mercury in fish

Mercury in Fish

  • Once mercury enters a waterway, naturally occurring bacteria convert it to methyl mercury.

  • Methyl mercury then works its way up the food chain as large fish consume contaminated smaller fish.

  • Instead of dissolving or breaking down, methyl mercury accumulates at ever-increasing levels.

  • Predatory fish can have mercury concentrations in their bodies that are 10,000 times higher than those of their surrounding habitat.


Fish consumption advisory

Fish Consumption Advisory


Yong cai department of chemistry biochemistry and southeast environmental research center

Fish consumption advisories apply to over 2 million acres of water in South Florida.


Background7

The Everglades Ecosystem

Assessment Program (The program)

Background

Biogeochemical Media Studied

  • Surface water

  • Floc (flocculent material found at surface-water interface

  • Porewater

  • Soil

  • Periphyton

  • Mosquitofish


Yong cai department of chemistry biochemistry and southeast environmental research center

Total Hg and MeHg in the Everglades


Yong cai department of chemistry biochemistry and southeast environmental research center

Mercury Cycling in the Florida Everglades


Yong cai department of chemistry biochemistry and southeast environmental research center

Fate of Mercury in the Florida Everglades


Objectives

Objectives

  • To estimate mercury mass budget

  • To investigate major biogeochemical processes and controls that are pertinent to Hg distribution and cycling


M ass budget of hg seasonally deposited into the everglades a ssumptions

Mass budget of Hg seasonally deposited into the Everglades: Assumptions

  • the seasonally deposited Hg will be redistributed into each compartment through a series of compartmentalization processes after deposition

  • the entering of seasonally deposited Hg into each compartment will result in an increase in Hg concentration of that compartment (denoted as ΔC in the equations)

  • the redistribution of newly deposited Hg across ecosystem compartments will follow the same patterns in which the legacy Hg is present


M ass budget of hg seasonally deposited into the everglades

Mass budget of Hg seasonally deposited into the Everglades

The left-hand side (LHS) is total Hg deposited during the whole dry (or wet) season while the right-hand side (RHS) represents THg amounts redistributed into each compartment plus outflow and evasion.

The distribution ratio (R) of Hg between water and other compartments (R = [Hg in solid or biological matrix] / [Hg in water], L/g) was defined and used to relate water Hg to Hg in the other compartments.

Liu et al., ES&T, 2008, 42,1954


Input parameters

Input Parameters

Liu et al., ES&T, 2008, 42,1954


Yong cai department of chemistry biochemistry and southeast environmental research center

Liu et al., ES&T, 2008, 42,1954


Yong cai department of chemistry biochemistry and southeast environmental research center

After R was calculated for the dry and wet season from the data obtained during the 2005 sampling events and the median R was introduced in above Equation, ΔCfor surface water was obtained first and then ΔC for the other compartments were calculated.

For MeHg, a similar mass balance was calculated.

Liu et al., ES&T, 2008, 42,1954


Yong cai department of chemistry biochemistry and southeast environmental research center

Mass (in bold, kg) and fraction estimates of THg deposited to the Everglades in (A) dry and (B) wet season in 2005. Rectangle size shows seasonal variation in compartment mass


Yong cai department of chemistry biochemistry and southeast environmental research center

Mass (in bold, kg) and fraction estimates of THg deposited to the Everglades in (A) dry and (B) wet season in 2005. Rectangle size shows seasonal variation in compartment mass


Yong cai department of chemistry biochemistry and southeast environmental research center

Mass (in bold, g) and fraction estimates of MeHg produced (from seasonally deposited Hg) in the Everglades during (A) dry and (B) wet season in 2005. Rectangle size shows seasonal variation in compartment mass. MeHg produced is shown in a rectangle with dashed line, with filled callouts linked to respective matrices. MeHg retained in soil, floc, or periphyton after redistribution is shown by line callouts.


Yong cai department of chemistry biochemistry and southeast environmental research center

Mass (in bold, g) and fraction estimates of MeHg produced (from seasonally deposited Hg) in the Everglades during (A) dry and (B) wet season in 2005. Rectangle size shows seasonal variation in compartment mass. MeHg produced is shown in a rectangle with dashed line, with filled callouts linked to respective matrices. MeHg retained in soil, floc, or periphyton after redistribution is shown by line callouts.


Yong cai department of chemistry biochemistry and southeast environmental research center

Fate of Mercury Deposited into the Florida Everglades during the 2005 Wet Season

Liu et al., ES&T, 2008, 42,1954


Summary

Summary

  • Compared with dry season, wet season is more favorable for Hg bioaccumulation, indicated by higher mosquitofish THg, bioaccumulation factor (BAF), and biomagnification factor (BMF) from periphyton to mosquitofish.

  • Substantially elevated MeHg production in floc and periphyton and changes in food web structure in the wet season could play an important role in seasonality in Hg bioaccumulation.

  • Mercury mass budget in the Everglades was estimated.


Yong cai department of chemistry biochemistry and southeast environmental research center

Mosquitofish THg versus periphyton MeHg. Closed and open circles are data obtained in the dry and wet season, respectively.


Yong cai department of chemistry biochemistry and southeast environmental research center

Mosquitofish THg versus water MeHg. Closed and open circles are data obtained in the dry and wet season, respectively.


Yong cai department of chemistry biochemistry and southeast environmental research center

Mosquitofish THg versus DOC-normalized water MeHg. Closed and open circles are data obtained in the dry and wet season, respectively.


Yong cai department of chemistry biochemistry and southeast environmental research center

Bioaccumulation factor (BAF) as a function of DOC. Closed and open circles are data obtained in the dry and wet season, respectively.


Yong cai department of chemistry biochemistry and southeast environmental research center

Correlations between Hg (THg, MeHg, and MeHg/THg ratio) and DOC in Everglades water. Closed and open circles are data obtained in the dry and wet season, respectively.

Indicating DOC has stronger binding capability with MeHg than with THg


Yong cai department of chemistry biochemistry and southeast environmental research center

MeHg/THg ratios in water reported in literatures. The numbers in parentheses are the median values.

a: calculated from data reported in the original literature.


Implication for hg bioaccumulation

Implication for Hg Bioaccumulation

  • Relatively high concentration of MeHg in water, floc, and periphyton

  • Periphyton is an important base component of the Everglades food web (a primary food source for numerous species of invertebrates, small fish, and amphibians)

  • Floc layer could contribute to Hg bioaccumulation by increasing MeHg production and mobility of THg and MeHg

  • High MeHg/THg ratios in water


Acknowledgements

Acknowledgements

  • EPA Office of Research and Development

  • US EPA Region 4

  • Army Corps of Engineers

  • National Park Services

  • Florida Department of Environmental Protection

  • Mercury Laboratory (SERCMLAB) at FIU

  • Battelle Marine Science Laboratory


Yong cai department of chemistry biochemistry and southeast environmental research center

FLORIDA INTERNATIONAL UNIVERSITY

Miami's public research university

  • One of America's most dynamic institutions of higher learning

  • Among the top 100 public national universities (U.S. News & world report)

  • One of the top 10 public commuter universities (money)

  • The country's 18th best value in public higher education (Kiplinger's personal finance magazine)

  • A member of the Phi Beta Kappa, the nation's oldest and most distinguished academic honor society

  • The advancement of teaching as a doctoral/research university-extensive, the highest ranking in its classification system (Carnegie foundation)


Yong cai department of chemistry biochemistry and southeast environmental research center

  • 27 faculty and 8 staff personnel

  • Our faculty receive outside funding that includes support for graduate and undergraduate research assistants

  • Our students regularly contribute to research publications in top scientific journals

  • State-of-the-art instrumentation

  • Initiated a PhD program in 1997 and currently have a variety of undergraduate and graduate degree programs

  • Our students also benefit from several institutes and centers:

    • The Southeast Environmental Research Center (SERC)

    • The International Forensic Science Institute (IFRI)

    • The Advanced Mass Spectrometry Facility (AMSF),

    • The Center for the Study of Matter at Extreme Conditions (CeSMEC)


Yong cai department of chemistry biochemistry and southeast environmental research center

FIU Chemistry Program

  • The Department of Chemistry and Biochemistry faculty offers a broad range of expertise in the areas of

    • Analytical

    • Biochemistry

    • Environmental chemistry,

    • Forensic chemistry,

    • Natural (organic) products chemistry,

    • Inorganic chemistry, and

    • Physical chemistry.

  • At the graduate level, we offer a MS and a PhD in Chemistry. Interdisciplinary MS degree in Forensic Science and PhD in Chemistry with Forensic track are also offered.


Yong cai department of chemistry biochemistry and southeast environmental research center

Graduate Study in Chemistry

  • Master of Science (M. Sc.)

    • The Master of Science in the Department of Chemistry is a research-intensive degree and the M.S. program provides flexibility for students with varied interests.

    • Graduates of our M.S. program are well prepared for technical jobs in the chemical industry, teaching, doctoral programs, and professional schools. We accept part-time and full-time students into the M.S. program.

  • The Master of Science in Forensic Science

    • The Master of Science in Forensic Science is an interdisciplinary program designed to prepare students for careers in forensic science laboratories. The program may also be suitable preparation for doctoral instruction in several disciplines.


Yong cai department of chemistry biochemistry and southeast environmental research center

  • Doctor of Philosophy (Ph.D.)

    • The Doctoral program is a research-intensive degree emphasizing critical thinking and original problem solving.

    • While the department’s strength is the interdisciplinary nature of the faculty research, particularly in the areas of environmental and biomedicinal chemistry, research projects in traditional areas of chemistry are also available to the students.

    • The student typical chooses a series courses, which is focused in one of chemistry sub-disciplines, analytical, biochemistry, inorganic, organic or physical.


Financial assistance

Financial Assistance

  • Financial aid comes from various agencies (federal, state and local governments, universities, community organizations, and private corporations or individuals) to help students meet the cost of attending college.

  • Most of our graduate students are financially supported, with full tuition scholarships and assistantships. The current annual assistantship stipend is at least $22,660 for PhD and $15,000 for MS. Health insurance is subsidized (75%) by FIU. Dissertation Year Fellowships, Presidential Enhanced Assistantships, and Presidential Fellowships are also available on a competitive basis to excellent students.

  • Financial Assistance for Minorities Students

    • 1. Graduate Minority Opportunities Program

    • 2. McKnight Doctoral Fellowship Program

    • 3. Delores Auzenne Fellowship


Yong cai department of chemistry biochemistry and southeast environmental research center

Affiliated Organizations

  • SERC promotes, coordinates and conducts environmental research in the Southeastern United States and the Caribbean.

  • SERC facilitates linkages between scientists, agency representatives and government agencies and provides an organizational structure for regional environmental research initiatives and interdisciplinary environmental investigations.

  • SERC serves as the physical location for offices of two of the federal government’s efforts to restore the South Florida ecosystem. Both the United States Geological Survey - Biological Research Division (formerly the National Park Service Cooperative Parks Study Unit) and the South Florida Ecosystem Restoration Task Force are housed within SERC.


Yong cai department of chemistry biochemistry and southeast environmental research center

Affiliated Organizations

  • The IFRI serves local and national law enforcement efforts in the application of scientific principles to the administration of justice.

  • A large number of institute affiliated FIU faculty conduct research and provide forensic expertise. The Metro-Dade Police Department, the Dade County Medical Examiner's Office, the Broward Sherriff's Office, the Broward County Medical Examiner's Office and the Drug Enforcement Administration house local forensic laboratories in South Florida.

  • A combined total of over 100 scientists work in these laboratories conducting evidence examinations and offering expert testimony in state and federal courts.


Yong cai department of chemistry biochemistry and southeast environmental research center

Affiliated Organizations

  • The Chemistry Graduate Student Organization was formed by the graduate students in the Department of Chemistry.

  • The goal of the association is to promote awareness of our interests within the student government body, to increase interaction of students within the program, and become more active voice in issues that affect the growth of technical industries in this community.

  • The association seeks to promote scholarship, community service, and events that increase the understanding and importance of chemistry and science in general.

Graduate Student Organization


Yong cai department of chemistry biochemistry and southeast environmental research center

Affiliated Organizations

  • The Chemistry Club at FIU was recognized as a Chapter of the Student Affiliates of the American Chemical Society in October 1979.

  • The chapter gives the opportunity for students of chemistry related sciences to become better acquainted with a myriad of subjects in the chemical profession and provides experience in preparing and presenting technical material.

  • It also fosters the awareness of the responsibilities and challenges of the modern chemist.

  • Moreover, academic as well as employment information concerning the field of chemistry are disseminated.


Yong cai department of chemistry biochemistry and southeast environmental research center

Available state-of-the-art instrumentations

  • The Department of Chemistry was recently awarded managerial and technical responsibility of the AMSF.

  • AMSF is a cutting edge university wide mass spectrometry facility for research and contract work.

  • The facility is envisaged to be used particularly heavily for funded research activities by faculty and students from the Department of Chemistry and Biochemistry as well as others within FIU.


Yong cai department of chemistry biochemistry and southeast environmental research center

Available state-of-the-art instrumentations

  • Foster and Freeman Glass Refractive Index Measurement System (GRIM)

  • Varian GC/Ion Trap/MS-MS (2 available)

  • Several GC/FID (Flame Ionization Detectors)

  • Purge and Trap GC/NPD

  • HP-6890 GC/MS with headspace, pyrolysis, and liquid sampling options. Negative/Positive mode

  • HP-4500 Plus ICP-MS with a Cetac LSX-200 laser ablation system

  • PE SCIEX ICP/MS DRC II

  • LSX 200Plus LA Sample Introduction System

  • LSX 500Plus LA Sample Introduction System

  • GC/Atomic Emission Spectroscopy

  • HPLC with Electrochemical Detector


Yong cai department of chemistry biochemistry and southeast environmental research center

Available state-of-the-art instrumentations

  • Capillary Electrophoresis

  • Finnigan/Thermoquest HPLC-PDA-MS

  • Bruker 400 and 600 MHz NMRs

  • FT-IR Spectrometer

  • Isco Supercritical Fluid Extractor (SFE)

  • Pharmacia FPLC (2 available)

  • Several HPLC/UV Detector

  • Detector GE Ion Trak (IMS)

  • Hitachi FMBIOII Gel Electrophoresis Analyzer

  • PE Applied Biosystems 310 CE Genetic Analyzer

  • Several Thermocyclers of various brands

  • Intoxilyzer 5000 (CMI)

  • Beckman P/ACE CE systems with various detectors

  • Beckman MSQ CE system with UV and PDA detectors


  • Login