Loading in 5 sec....

Visual Analysis of Large Graphs Using ( X , Y )-clustering and Hybrid Visualizations PowerPoint Presentation

Visual Analysis of Large Graphs Using ( X , Y )-clustering and Hybrid Visualizations

- By
**daria** - Follow User

- 119 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about ' Visual Analysis of Large Graphs Using ( X , Y )-clustering and Hybrid Visualizations ' - daria

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Visual Analysis of Large Graphs Using (X, Y)-clustering and Hybrid Visualizations

V. Batagelj, W. Didimo, G. Liotta,P. Palladino, M. Patrignani

(Univ. Ljubljana, Univ. Perugia, Univ. Roma Tre)

In Proc. IEEE Pacific Visualization 2010

Outline

- The problem of visualizing large graphs
- State of the art
- Our contribution
- Conclusions and open problems

The problem of visualizing large graphs

- Some major issues in the visualization of large graphs:
- Readability: optimization of aesthetic criteria
- Scalability: fast computation
- Visual complexity: interaction tools that allow users to limit the amount of information displayed on the screen
- overview of the graph
- details on demand
- user’s mental map preservation

State of the art

- Readability: there are many effective algorithms that are computationally fast for relatively small and sparse graphs (see the graph drawing book of Di Battista, Eades, Tamassia, Tollis , 1999)

State of the art

- Scalability: there are some fast graph drawing algorithms based on physical or algebraic models; the drawings have high visual complexity and do not allow detailed views (see the survey of Hacul and Jünger, 2007)

State of the art

- Visual complexity: draw the whole graph and then interact with it; ex. focus+context techniques, like fisheye view or hyperbolic layouts; conceived for tree-like graphs (see the survey of Herman, Melançon, Marshall, 2000)

State of the art

- Interactive approaches for visualizing and exploring large graphs:
- graph visualized incrementally or at different levels of details
- strong interaction between the user and the drawing

Interactive Approaches

- Bottom-up strategies: the graph is visualized a piece at a time
- topological window moving through canvas (Eades et al. ,1997)
- Limits: no overview, the user’s mental map preservation is difficult

Interactive Approaches

- Bottom-up strategies: the graph is visualized a piece at a time
- incremental enhancement of the drawing (ex. Carmignani et al., 2002)
- Limits: no overview, the user’s mental map preservation is difficult without readability degradation

Interactive Approaches

- Top-down approaches

Interactive Approaches

- Top-down approaches
- the graph is clustered (vertices are grouped together)

Interactive Approaches

- Top-down approaches
- the graph is clustered (vertices are grouped together)
- a simplified view is shown (overview)

Interactive Approaches

- Top-down approaches
- the graph is clustered (vertices are grouped together)
- a simplified view is shown (overview)
- the user interactively explores the clusters (detailed views)

Interactive Approaches

- Top-down strategies
- the graph is clustered (vertices are grouped together)
- a simplified view is shown
- the user interactively explores the clusters

- Limits
- someone/something has to define clustering rules
- existing clustering algorithms do not guarantee properties on the graph of clusters

Our contribution

- A top-down approach with these ingredients:
- a new clustering framework
- new clustering algorithm within the framework
- hybrid visualizations

- A system: VHyXY
- Some case studies

Basic Terminology: Clustering

- G=(V, E): graph with vertex set V and edge set E
- A cluster of G=(V, E) is a subset of V
- A clusteringC of G isa set of disjoint clusters of G

Basic Terminology: Clustering

- Thegraph of clusters H(G, C)is the graph obtained by collapsing each cluster of C into a single vertex and by replacing multiple edges with a single one

Basic Terminology: Clustering

- Thegraph of clusters H(G, C)is the graph obtained by collapsing each cluster of C into a single vertex and by replacing multiple edges with a single one

A new clustering framework

- Clustering algorithms usually detect groups of highly connected vertices without taking care of the graph of clusters
- We adopt a new framework for the design of automatic clustering algorithms that guarantee:
- desired properties for the clusters
- desired properties for the graph of clusters

The (X,Y)-clustering

- X and Y are two classes of graphs with certain properties
- G is called an (X,Y)-graph if there exists a clustering of G such that:
- each cluster induces a subgraphthat belongs to Y
- the graph of clusters belongs to X

(X,Y)-graph example

- Let X be the class of cycles and let Y be the class of K4

(X,Y)-graph example

- Let X be the class of cycles and let Y be the class of K4

(X,Y)-graph example

- Let X be the class of cycles and let Y be the class of K4

- The graph is a (cycle,K4)-graph

Interesting combinations

- Xis some class of sparse graphs:
- planar graphs, cycles, trees, paths, …

- Y is some class of highly connected graphs:
- cliques, subgraphs with high-degree vertices, …

- One can think of using different visual paradigms and algorithms for drawing the graph of clusters and the subgraph induced by each cluster (hybrid visualization)

Remark on (X,Y)-clustering

- (X, Y)-clustering was previously defined by Brandenburg (GD 1997), but his model requires that every vertex belongs to some cluster
- Our model does not have this requirement, which poses severe practical limitations

The (X,Y)-clustering problem

- Problem: Given a graph G and two desired classes X and Y, is G an (X,Y)-graph?
- This problem is NP-hard in general
- Theorem: Deciding whether G is a (planar, k-clique)-graph for desired k ≥ 5 is NP-hard
- This result motivates us to look for some relaxation of cliques

K-core components

- The subgraph induced by a cluster is ak-core component if it is a maximal connected subgraph such that every vertex has degree at least k

5-core component

4-core component

4-core component

(Planar, K-core component)-graphs

- We investigate (X,Y)-graphs G such that:
- X is the class of planar graphs
- Y is the class of k-core components of G

- In particular, for a given k > 0, one can ask whether G is a (planar, k-core component)-graph
- this decision problem can be solved in polynomial time
- we give a polynomial-time algorithm that finds the maximum k for which G is a (planar, k-core component)-graph, and that computes the corresponding clustering

Properties of (planar, k-core component)-graphs

The union of all k-core components of G is called the k-core of G (the k-core of G, if it exists, is unique)

Property. If Ghas the k-core Gk (for some k≥ 1), then Ghas the (k−1)-core G(k−1) and Gk ⊆ G(k−1)

Lemma. If G is a (planar, k-core component)-graph then it is a (planar, (k−1)-core component)-graph

Clustering Algorithm

- Theorem: Let G be a graph with n vertices and m edges. There exists an O((n+m)log n)-time algorithm that computes the maximum k for which G is a (planar, k-core component)-graph, and the corresponding clustering
- Steps of the algorithm:
- Compute core-numbers for the vertices
- Perform a binary search on core-numbers
- For each graph of clusters, test its planarity

Algorithm animation

- Compute the core number of each vertex, i.e., the maximum k for which there exists a k-core that contains the vertex

Algorithm animation

- Compute the core number of each vertex, i.e., the maximum k for which there exists a k-core that contains the vertex

3

4

5

3

3

2

5

3

5

2

5

4

5

4

4

5

2

4

4

1

1

Hybrid Visualizations

- The (X, Y)-clustering technique can be used to design hybrid visualizations
- combination of different drawing conventions for different parts of the graph
- Example:
- node-link representation for sparse subgraphs
- matrix-based representation for dense subgraphs

- Highly readable drawings for the graph of clusters (which is always planar)

Matrix based representation

- Matrix-based representation
- vertices are rows and columns
- edges are cells

- The ordering of vertices in rows/columns may strongly affect the number of crossings in the drawing

Crossings minimization heuristic

vertex1

vertex2

vertex3

vertex4

vertex5

vertex6

vertex7

vertex8

vertex10

vertex11

vertex12

vertex13

vertex14

vertex15

vertex16

vertex17

vertex18

vertex19

vertex10

vertex20

Crossings minimization heuristic

vertex1

vertex2

vertex3

vertex4

vertex5

vertex6

vertex7

vertex8

vertex10

vertex11

vertex12

vertex13

vertex14

vertex15

vertex16

vertex17

vertex18

vertex19

vertex10

vertex20

Crossings minimization heuristic

vertex20

vertex1

vertex2

vertex3

vertex4

vertex5

vertex6

vertex7

vertex8

vertex10

vertex11

vertex12

vertex13

vertex14

vertex15

vertex16

vertex17

vertex18

vertex19

vertex10

Crossings minimization heuristic

vertex20

vertex1

vertex2

vertex3

vertex4

vertex5

vertex6

vertex7

vertex8

vertex10

vertex12

vertex13

vertex14

vertex15

vertex16

vertex11

vertex17

vertex18

vertex19

vertex10

Remark about hybrid visualizations

- A hybrid visualization that combines node-link and matrix-based representations was previously used in the literature (Henry et al., 2007 - NodeTrix)
- Clusters are manually defined
- no automatic clustering
- no automatic ordering for rows-columns

The System VHyXY

- VHyXYintegrates the clustering algorithm and hybrid visualizations
- X-class chooser (e.g., planar, forest)
- Y-class chooser (e.g., k-core component)
- Filters on edge weights
- Specific drawing algorithms for each component

Case Study: Co-authorship networks

- DBLP: on-line database of publications in Computer Science
- VHyXYallows user to query DBLP on a specific topic
- It retrieves data about all papers on that topic (looking at the title of the papers)
- It builds a network where
- authors are vertices
- there is an edge between two authors if they share a paper (edge’s weight = number of papers)

- Hybrid visualizations: a matrix and a circular in an orthogonal layout

114 orthogonalvertices and 494 edges

- Larger network for “graph drawing”

Clustering algorithm performance orthogonal

- Graph clustering
- Property of a graph: the higher the value the better can be the clustering

- Coverage
- How the computed clusters covers edges of the whole graph

- Performance
- Counts the number of “correctly interpreted pairs of nodes” in a graph

- Error
- 1-performance

0.94

0.999

[Brandes et al. “Engineering graph clustering: Models and experimental evaluation” ACM Journal of Experimental Algorithmics 2007]

Open problems orthogonal

- Explore additional X-classes or Y-classes for which polynomial-time clustering algorithms exist
- X: forest, path, outerplanar, …
- Y: relaxations of cliques, …

- Extend our techniques to
- multi-level clustering (hierarchical clustering)
- overlapping clusters

- Experiment the system on a larger set of application domains
- biological networks, criminal networks, …

Download Presentation

Connecting to Server..