- 130 Views
- Uploaded on
- Presentation posted in: General

Download Presentation
## PowerPoint Slideshow about 'Image Processing ' - danton

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Isodata algorithm

### Isodata algorithm

### Isodata algorithm

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Image Processing

### Một vài ứng dụng

### Một vài ứng dụng

Segmentation

Process of partitioning a digital image into multiple segments (sets of pixels).

2. Clustering pixels into salient image regions, i.e., regions corresponding to individual surfaces, objects, or natural parts of objects.

Segmentation

Used to locate objects and boundaries (lines, curves, etc.) in images.

Process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics.

The original image:

The objects in image:

A parameter called the brightnessthreshold is chosen and applied to the image f(x, y) as follows:

(x, y) Object f(x, y)

or

(x, y) Object f(x, y)

A. Threshold

The original image:

The objects in image:

Remark:

The output is the label "object" or "background" which, due to its dichotomous nature, can be represented as a Boolean variable "1" or "0".

A. Threshold

The original image:

The objects in image:

How to choose the threshold ?

A. Threshold

- This iterative technique for choosing a threshold was developed by Ridler and Calvard .
- Set k = 0, 0 = L/2.
- While |k-k-1|>
- 1.Compute the sample mean mf,k of the gray values associated with the foreground pixels and the sample mean mb,k of the gray values associated with the background.
- 2. Compute a new threshold value k:
- k = ( mf,k-1 + mb,k-1 ) / 2
- 3. k = k +1

The threshold chosen by Isodata algorithm is 139

teta = (m1 + m2) / 2

stop = false

while !stop

ts1 = 0; ts2 = 0

ms1 = 0; ms2 = 0

for i = 0 to teta

ts1 = ts1 + h(i) * i

ms1 = ms1 + h(i)

m1 = ts1/ms1

for i = teta to L

ts2 = ts2 + h(i) * i

ms2 = ms2 + h(i)

m2 = ts2/ms2

tg = Round((m1 + m2) / 2)

if teta - tg <

stop = true

teta = tg

loop

= 116, k=4

Triangle algorithm

A line is constructed between the maximum of the histogram at brightness bmax and the lowest value bmin = (p=0)% in the image.

Triangle algorithm

The distance d between the line and the histogram h[b] is computed for all values of b from b = bmin to b = bmax.

Triangle algorithm

The brightness value bo where the distance between h[bo] and the line is maximal is the threshold value, that is, = bo.

Triangle algorithm

Source and segmented images with threshold 152 chosen by triangle algorithm

Background-symmetry algorithm

Assumes a distinct and dominant peak for the background that is symmetric about its maximum.

Background-symmetry algorithm

- The maximum peak (maxp) is found by searching for the maximum value in the histogram.
- Searching on the non-object pixel side of that maximum to find a p% point.

Background-symmetry algorithm

the object pixels are located to the left of the background

peak at brightness 183, that mean

h(183) = max {h(a): 0 h(a) 255 } = 351

search on the right of that peak to locate to find 95%. The total number of pixels in the image is 17424 and the total number of pixels on the right of peak is 8241, about 95% (94.59%) of 17424/2 = 8712.

Background-symmetry algorithm

At which brightness value 5% of the pixels lie to the right (are above)? This occurs at brightness 216. The number of pixels on the right of 216 is 936, equal to 5% (0.0537) the total number of pixels in the image: 17424.

Because of the assumed symmetry, we use as a threshold a displacement to the left of the maximum that is equal to the displacement to the right where the p% is found.

Background-symmetry algorithm

This means a threshold value given by

= 183 - (216 - 183) = 150.

In formula:

- Lời giải:
- Phân vùng ảnh I thành 2 phần: Phần 1 gồm những điểm ảnh thuộc đám lửa và phần 2 gồm những điểm ảnh không thuộc đám lửa.
- 2. Nếu diện tích phần 1 lớn hơn một ngưỡng nào đó (ví dụ, có ít nhất vài điểm ảnh) thì kết luận là ảnh I có chứa đám lửa.

=170 (b)

Đặc trưng màu điểm ảnh thuộc phần 1 (đám lửa)(1):

(1) Đào Thanh Tĩnh, Hà Đại Dương, Một mô hình phát hiện đám cháy qua ảnh video, Tạp chí Khoa học và Kỹ thuật, ISSN-1859-0209, tr. 5-11, Số 127, 4-2009.