Sven Isaksson
Download
1 / 52

Scientific Tools for Probing the Past - PowerPoint PPT Presentation


  • 129 Views
  • Updated On :

Sven Isaksson Archaeological Research Laboratory Department of Archaeology and Classical Studies Stockholm University. Scientific Tools for Probing the Past. Archaeology and Chemistry Why a little chemistry is useful to archaeologists:

Related searches for Scientific Tools for Probing the Past

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Scientific Tools for Probing the Past' - daniel_millan


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Slide1 l.jpg

Sven Isaksson

Archaeological Research Laboratory

Department of Archaeology and Classical Studies

Stockholm University

Scientific Tools for Probing the Past


Slide2 l.jpg

  • Archaeology and Chemistry

  • Why a little chemistry is useful to archaeologists:

  • The archaeological sources are material remains – chemistry is the study of matter and its change

  • Material remains are affected by the ravages of time – what is left and how it is preserved

  • Man has always made use of matter and changed it; Man – the Chemist


Slide3 l.jpg

History

C. 1800, first chemical analyses

1896, first physical analyses

1945 New techniques in chemistry, physics and biology

1949, 14C-dating

1970 Increased application in archaeology

1985 Break-through in organic analyses


Slide4 l.jpg

Archaeological

Research

Laboratory

Established in 1976

Professorship in 1986, first as an adjoining position but later as a regular chair, in laboratory archaeology (swe: laborativ arkeologi)

Since 2005 part of the newly created Department of Archaeology and Classical Studies


Slide5 l.jpg

Department of Archaeology and Classical Studies

Archaeological

Research

Laboratory

Classical Studies

Numismatic

Research

Group

Osteoarchaeological

Research

Laboratory

Archaeology


Slide6 l.jpg

Scientific tools are used to probe the archaeological material for more data

Archaeology!

Not Archaeology?

Not science?

Science!


Slide7 l.jpg

The Fate of Finds material for more data

  • Excavation

  • Semi-stable equilibriums are broken, collection, registration

  • Recording

  • Cleaning, visual characterization

  • Conservation

  • Halt decomposition, extract information

  • -excavation on microscopic level

  • Storage

  • Keep, preserve, display

  • Scientific analyses?

  • Excavations on molecular or atomic level



Slide9 l.jpg

Contamination during excavation material for more data

Hawaiian Tropic (coconut oil, UV-block).


Slide10 l.jpg

Contamination during recording material for more data

Day Cream (palm-tree oil etc)


Slide11 l.jpg

Contamination during conservation material for more data

From Aveling 1998

Paraffin


Slide12 l.jpg

Keeping in museums material for more data

Ancient horse DNA from Birka

Excavated aDNA

mtDNA HTG10 HTG8

Late 1800-tal + - -

Late 1900-tal + + +

From Götherström 2001

Alkanoic acids in Norwegian organic residues

Is organic residues better off in the ground than in the museum?!


Slide13 l.jpg

Analytical techniques material for more data

Prospecting

Dating

Characterization


Slide14 l.jpg

Prospecting material for more data

Site locating


Slide15 l.jpg

Prospecting material for more data

Site locating

Site investigating


Slide16 l.jpg

Prospecting material for more data

Site locating

Site investigating

Detecting anomalies from natural background


Slide17 l.jpg

Prospecting material for more data

Site locating

Site investigating

Detecting anomalies from natural background

Geochemical – e.g. phosphate

Geophysical – e.g. slingram, magnetometer

and ground penetrating radar


Slide18 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Nutida kyrkan


Slide19 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Nutida kyrkan med tolkningen av katedralens utsträckning


Slide20 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Undersökningsytorna


Slide21 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 0 -0,6 m djup


Slide22 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 0,2-0,8 m djup


Slide23 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 0,5-1,1 m djup


Slide24 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 0,7-1,3 m djup


Slide25 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 1,0-1,6 m djup


Slide26 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 1,2-1,8 m djup


Slide27 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 1,4-2,1 m djup


Slide28 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 1,7-2,3 m djup


Slide29 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 1,9-2,5 m djup


Slide30 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 2,1-2,8 m djup


Slide31 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 2,4-3,0 m djup


Slide32 l.jpg

Modellering efter georadar-prospektering material for more data

Gamla Uppsala kyrka

Reflexer på 2,6-3,2 m djup


Slide33 l.jpg

Dating material for more data

To fix an event along a time axis


Slide34 l.jpg

Dating material for more data

To fix an event along a time axis

But what event?


Slide35 l.jpg

Dating material for more data

To fix an event along a time axis

But what event?

The event dated by an analytical technique is not always the same as the archaeological event…


Slide36 l.jpg

Dating material for more data


Slide37 l.jpg

Dating material for more data

Method Material Range (yrs) Sample size

Chronological

Find combination artefacts 106 -

Dendrochronology wood 104 100 treerings

Magnetic

TRM burnt clay 104, or longer cm

DRM sediment

Radiation damage

Fission tracks glass, mineral 102…107 mm

TL ceramic, br. stone 102…105 mg…g

OSL sediment 106 mg…g

ESR enamel 103…106 mg…g

Radioactive decay

Conventional 14C organic 50 000 10 g

Accelerator 14C organic 70 000 mg

K/Ar mineral 105…109 g

Physical phenomenon

Hydration obsidian, glass mm

Chemical reactions

Racemisation bone, hair 102…106 g

Biological growth

Lichenometry lichens


Slide38 l.jpg

Characterization material for more data

Provenance

Biological origin

Technology

Man

Living conditions and Climate


Slide39 l.jpg

Provenance material for more data

Heterogeneity of the Earths crust

Materials collected from a certain deposit may have a specific composition

Mineral (stone, clay), metal, slag, glass


Slide40 l.jpg

Provenance material for more data

Flint

Provenance of 70 % of flint axes identified by trace elements alone

Together with archaeological data, e.g. context and date, 95 % identified


Slide41 l.jpg

Provenance material for more data

Garnets


Slide42 l.jpg

Biological origin material for more data

Squalene

Stigmasterol

Cholesterol


Slide43 l.jpg

Biological origin material for more data

Chemical analyses of:

Fats/Oils

Waxes

Pitches

Tars

Leather

Textile

Food

Morphological analyses:

Seeds

Leather

Fur

Textile

Bone

Short-chain

fatty acids

Long-chain

ketones and DAG

Long-chain

fatty acids

and MAG

Triacylglycerols (TAG)

Sterols

Gas chromatogram of lipid residues

IR-spectra of organic residues

Scanning Electron Micrographs of cells from barley and pea in prehistoric food residue


Slide44 l.jpg

Technology material for more data

Deposit or Inlay?


Slide45 l.jpg

Technology material for more data

Deposit or Inlay?


Slide46 l.jpg

Technology material for more data

Just because its green doesn't mean its bronze

(Stjerna 1997)


Slide47 l.jpg

Technology material for more data

Symbols or Cymbals: the Fröslunda shields

From a sulfide ore - late Bronze Age

Hammered and annealed – not suitable as cymbals

Flattening of slag inclusions – hammered from a piece 15 cm in diameter


Slide48 l.jpg

Man material for more data

Diet C- and N-isotopes, trace elements

Breast-feeding N-isotopes

Sex determination Osteology, aDNA

Kinship aDNA

Migration aDNA, S- and O- isotopes, trace elements


Slide49 l.jpg

Living conditions and climate material for more data

Disease Osteology, aDNA

Climate O-isotopes

Vegetation, regional Pollen analysis

Vegetation, local Plant macro fossils, organic geochemistry


Slide50 l.jpg

Facilities material for more data

  • aDNA laboratory for extraction and PCR, post-PCR laboratory in separate building

  • Atomic Absorption Spectrophoto-meter for trace metal element analyses of soil, bone and artefacts

  • Field-archaeology equipment, incl. sampling probes, field spectrophotometer, metal detector, GPS, total station, photo-tower for analogue or digital cameras

  • Fourier Transform Infrared Spectrometry for analyses of organic residues and pigments

  • Freezer-room for the storage of very large samples, e.g. whole graves

  • Gas Chromatography and Mass Spectrometry for organic residue analyses

  • GIS computer systems for spatial analyses

  • Mass Spectrometry for isotope (C, N, S, O) analyses primarily of bone collagen

  • Microscopes and sample preparation equipment for analyses of archaeo-botanical materials, textiles, etc


Slide51 l.jpg

Facilities material for more data

  • Slingram, Ground-Penetrating Radar and Magnetometer for archaeological prospecting

  • Spectrophotometers for wet-chemical analyses (e.g. phosphates)

  • Variable Pressure Scanning Electron Microscope with Energy Dispersive X-ray Spectrometry for microstructure and elemental analyses

  • X-Ray Diffraction for the analysis of minerals, bones and pigments

  • Microscopes and sample preparation equipment for microstructure analyses of metals and ceramics

  • Microwave Accelerated Reaction System for rapid sample preparation, i.e. extracting, digesting, dissolving, hydrolysing or drying organic or inorganic materials

  • Optical 3D-scanner for both high-resolution surface analyses of artefacts and for large-scale 3D documentation

  • Preparation and conservation laboratory primarily for metal artefacts


Slide52 l.jpg

Research programs material for more data

  • Svealand in the Vendel and Viking Period (finished)

  • Forts and Fortifications in the Mälaren Region AD 400-1100 (finished)

  • Us and Them – Cultural identity in the Middle Neolithic

  • Bread for the dead, bread for the living… Cereal-based food in the Late Iron Age

  • By House and Hearth – The chemistry of culture layers as a document of the subsistence of prehistoric man

  • Tracing Ancient Vegetable Food – Chemotaxonomy of plant lipid residues

  • Gender and Diet in the Neolithic


ad