1 / 32

Review of Previous Lecture

Review of Previous Lecture. Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP. Announcement. Homework 1 and project 1 due Wed. midnight Submission instruction posted in the newsgroup Recitation materials online. Our goals:

danica
Download Presentation

Review of Previous Lecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Review of Previous Lecture • Electronic Mail: SMTP, POP3, IMAP • DNS • Socket programming with TCP Some slides are in courtesy of J. Kurose and K. Ross

  2. Announcement • Homework 1 and project 1 due Wed. midnight • Submission instruction posted in the newsgroup • Recitation materials online

  3. Our goals: understand principles behind transport layer services: multiplexing/demultiplexing reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control Chapter 3: Transport Layer

  4. Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Outline

  5. provide logical communication between app processes running on different hosts transport protocols run in end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical logical end-end transport Transport services and protocols

  6. network layer: logical communication between hosts transport layer: logical communication between processes relies on, enhances, network layer services On one host, there may be several processes communicating with processes on several other hosts, with different protocols Transport vs. network layer

  7. reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP no-frills extension of “best-effort” IP services not available: delay guarantees bandwidth guarantees application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical logical end-end transport Internet transport-layer protocols

  8. Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Outline

  9. Multiplexing at send host: Demultiplexing at rcv host: Multiplexing/demultiplexing delivering received segments to correct socket gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) = socket = process application P4 application application P1 P2 P3 P1 transport transport transport network network network link link link physical physical physical host 3 host 2 host 1

  10. Host receives IP datagrams each datagram has source IP address, destination IP address each datagram carries 1 transport-layer segment each segment has source, destination port number (recall: well-known port numbers for specific applications) Host uses IP addresses & port numbers to direct segment to appropriate socket How demultiplexing works 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format

  11. UDP socket identified by two-tuple: (dest IP address, dest port number) When host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port number IP datagrams with different source IP addresses and/or source port numbers directed to same socket Connectionless demultiplexing

  12. P2 P1 P1 P3 SP: 9157 client IP: A DP: 6428 Client IP:B server IP: C SP: 6428 SP: 6428 SP: 5775 DP: 6428 DP: 9157 DP: 5775 Connectionless demux (cont) SP provides “return address”

  13. TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket Server host may support many simultaneous TCP sockets: each socket identified by its own 4-tuple Web servers have different sockets for each connecting client non-persistent HTTP will have different socket for each request Connection-oriented demux

  14. SP: 5775 SP: 9157 P1 P1 P2 P4 P3 P6 P5 client IP: A DP: 80 DP: 80 Connection-oriented demux (cont) S-IP: B D-IP:C SP: 9157 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C

  15. SP: 5775 SP: 9157 P1 P1 P2 P3 client IP: A DP: 80 DP: 80 Connection-oriented demux: Threaded Web Server P4 S-IP: B D-IP:C SP: 9157 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C

  16. Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Outline

  17. “no frills,” “bare bones” Internet transport protocol “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired UDP: User Datagram Protocol [RFC 768]

  18. often used for streaming multimedia apps loss tolerant rate sensitive reliable transfer over UDP: add reliability at application layer application-specific error recovery! UDP: more 32 bits source port # dest port # Length, in bytes of UDP segment, including header checksum length Application data (message) UDP segment format

  19. Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1’s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: addition of all segment contents + checksum check if all bits are 1: NO - error detected YES - no error detected. But maybe errors nonetheless? More later …. UDP checksum Goal: detect “errors” (e.g., flipped bits) in transmitted segment 0110 0101 1011 0100 0110 0101 0100 1111 1’s complement sum: Addition: Addition: 1’s complement sum:

  20. Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Outline

  21. important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Principles of Reliable data transfer

  22. important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Principles of Reliable data transfer

  23. important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Principles of Reliable data transfer

  24. rdt_send():called from above, (e.g., by app.). Passed data to deliver to receiver upper layer deliver_data():called by rdt to deliver data to upper udt_send():called by rdt, to transfer packet over unreliable channel to receiver rdt_rcv():called when packet arrives on rcv-side of channel Reliable data transfer: getting started send side receive side

  25. We’ll: incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify sender, receiver event state 1 state 2 actions Reliable data transfer: getting started event causing state transition actions taken on state transition state: when in this “state” next state uniquely determined by next event

  26. underlying channel perfectly reliable no bit errors no loss of packets separate FSMs for sender, receiver: sender sends data into underlying channel receiver read data from underlying channel Rdt1.0: reliable transfer over a reliable channel rdt_send(data) rdt_rcv(packet) Wait for call from below Wait for call from above extract (packet,data) deliver_data(data) packet = make_pkt(data) udt_send(packet) sender receiver

  27. underlying channel may flip bits in packet recall: UDP checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr->sender Rdt2.0: channel with bit errors

  28. Wait for ACK or NAK rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt2.0: FSM specification rdt_send(data) receiver snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for call from above udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) L sender rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK)

  29. Wait for ACK or NAK rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) rdt2.0: operation with no errors rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for call from above udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK)

  30. Wait for ACK or NAK rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) rdt2.0: error scenario rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for call from above udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK)

  31. Backup Slides

  32. IP protocol version number 32 bits total datagram length (bytes) header length (bytes) type of service head. len ver length for fragmentation/ reassembly fragment offset “type” of data flgs 16-bit identifier max number remaining hops (decremented at each router) upper layer time to live Internet checksum 32 bit source IP address 32 bit destination IP address upper layer protocol to deliver payload to E.g. timestamp, record route taken, specify list of routers to visit. Options (if any) data (variable length, typically a TCP or UDP segment) IP datagram format how much overhead with TCP? • 20 bytes of TCP • 20 bytes of IP • = 40 bytes + app layer overhead

More Related