1 / 54

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL

The Muon g-2 Experiment. Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration. Lepton Moments II, Cape Cod, June 2003. Standard Model Precision Experiment Fundamental Constants Related Experiments Interpretation Future Possibilities.

damisi
Download Presentation

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Muon g-2 Experiment Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration Lepton Moments II, Cape Cod, June 2003 Standard Model Precision Experiment Fundamental Constants Related Experiments Interpretation Future Possibilities

  2. TRImP u d s c b t e ne m nm t nt Some Questions Left Open by Standard Model • Masses of Fundamental Fermions (leptons, quarks) • Why 3 generations? • Origin of Parity Violation in Weak Interactions • (nature prefers lefthandedness) • Dominance of Matterover Antimatter in Universe • CP - Violation, Time Reversal Symmetry

  3. TRImP Possibilities to Test New Models  Low Energies & Precision Measurements High Energies & direct observations

  4. Gravitation Electro- Magnetism Magnetism Maxwell Glashow, Salam, Weinberg, t‘Hooft, Veltman ? Electricity Weak Electro-Weak Standard Model Strong Grand Unification not yet known? Standard ModelDevelopment

  5. minor error in calculations

  6. The new measurement of the muon magnetic anomaly • at the Brookhaven National Laboratory aims for • 0.35 ppm relative accuracy. • Why? • We have in the listing of fundamental physical constants: • electron magnetic anomaly • 1.159 652 186 9(41) 10 -3 (0.0035 ppm) • muon magnetic anomaly • 1.165 916 02(64) x 10-3(0.55 ppm) Sensitivity to heavier objects larger by (mm/me)2 40 000

  7. The new measurement of the muon magnetic anomaly • at the Brookhaven National Laboratory aims for • 0.35 ppm relative accuracy. • Why? • We have in the listing of fundamental physical constants: • electron magnetic anomaly • 1.159 652 186 9(41) 10 -3 (0.0035 ppm) • muon magnetic anomaly • 1.165 916 02(64) x 10-3(0.55 ppm)

  8. QED - Contributions: am(QED) = 116 584 705.6(2.9) * 10-11(Kinoshita 2000) Weak Interaction Corrections: m m m m m m Dam(weak) = 151(4) * 10-11(Kutho 1992, Degrassi 1998)

  9. QED - Contributions: am(QED) = 116 584 705.6(2.9) * 10-11(Kinoshita 2000) Weak Interaction Corrections: m m m m m m Dam(weak) = 151(4) * 10-11(Kutho 1992, Degrassi 1998)

  10. ! ! Hadronic Corrections for gm-2 Dam(hadr.,1st order) = 6951(75)*10-11 (Davier, 1998) Dam(hadr., higherorder) = -101(6) *10-11 (Krause, 1996) Dam(hadr., light on light) = -79(15) *10-11 (Hayakawa, 1998) Situation Spring 2001

  11. Early “Shopping List”

  12. The fixed probes 4 ppm Proton NMR

  13. The NMR-Trolley 17 probes - Proton NMR in water Electronics inside the trolley

  14. Trolley NMR Probes NMR Trolley Fixed NMR Probes Electrostatic Quadrupole Electrodes Trolley Rails Vacuum Vessel

  15. 900 000 000 positrons with E > 2GeV in 1999

  16. Systematic Uncertainties, Results Spin Precession • Pileup 0.13 ppm • AGS background 0.10 ppm • Lost muons 0.10 ppm • Timing Shifts 0.10 ppm • E field and vertical CBO 0.08 ppm • Binning and Fitting procedure 0.07 ppm • Coherent Betatron Oscillations 0.05 ppm • beam debunching 0.04 ppm • Gain Instability 0.02 ppm total systematic uncertainty dwa,sy = 0.25 ppm total statistical uncertainty dwa,st = 1.25 ppm Magnetic Field • wp,0 spherical probe 0.05 ppm • wp(R,ti) 17 trolley probes 0.22 ppm • wp(R,t) 150 fixed probes 0.15 ppm • wp(R) aging - • wp (RI) inflector fringe field 0.20 ppm • < wp> muon distribution 0.12 ppm total systematic uncertainty dwp=0.4 ppm wp/2p = 61 791 256 (25) Hz wa/2p = 229 072.8 (0.3) Hz

  17. m g-2 hadronic contribution weak contribution New Physics QED QED h mm, a, gm mm m+e- DnHFS, n=1 m+e- Dn1S-2S QED mm mm a QED corrections weak contribution mm QED corrections

  18. Theory: * need a for muon ! * hadronic and weak corrections *various experimental sources of a<better 100ppb>need constants at very moderate *a no concern for (g-2)maccuracy wa wammc Experiment: wp = am = mm wa emB - wp mp * wa and B (wp) measured in (g-2)m experiment <better 0.35 and 0.1 ppm> * c is a defined quantity <“infinite” accuracy> *mm (mm) is measured in muonium spectroscopy (hfs) <better 120 ppb> NEW 1999 *em is measured in muonium spectroscopy (1s -2s) <better 1.2 ppb> NEW 1999 *mp in water known >> probe shape dependence<< <better 26 ppb> *m3He to mp in water >> gas has no shape effect << <better 4.5 ppb> being improved

  19. Muonium Hyperfine Structure Yale - Heidelberg - Los Alamos Solenoid Dnexp = 4 463 302 765(53) Hz ( 12 ppb) Dntheo = 4 463 302 649(520)(34)(<100) Hz(<120 ppb) mm /mp = 3.183 345 13(39) (120 ppb) mm/me = 206.768 273(24) (120 ppb) a-1= 137.036 010 8(5 2)( 39 ppb) Sm m+ e- Detector m+in MW-Resonator W. Liu et al. Phys. Rev. Lett. 82, 711 (1999)

  20. Muonium Hyperfine Structure Yale - Heidelberg - Los Alamos Solenoid Dnexp = 4 463 302 765(53) Hz ( 12 ppb) Dntheo = 4 463 302 649(520)(34)(<100) Hz(<120 ppb) mm /mp = 3.183 345 13(39) (120 ppb) mm/me = 206.768 273(24) (120 ppb) a-1= 137.036 010 8(5 2)( 39 ppb) Sm m+ e- Detector m+in MW-Resonator W. Liu et al. Phys. Rev. Lett. 82, 711 (1999)

  21. Muonium 1S-2S Experiment Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale m++ e-+ Ekin 0 -.25 Rm 2S 244 nm Energy exp Dn 1s-2s = 2455 528 941.0(9.1)(3.7) MHz Dn 1s-2s = 2455 528 935.4(1.4) MHz mm+= 206.768 38 (17) me qm+= [ -1 -1.1 (2.1) 10-9 ] qe- 244 nm theo -Rm 1S m+ Detection m+ Laser Mirror m+e- Target Diagnostics m+in V.Meyer et al., Phys.Rev.Lett. 84, 1136 (2000)

  22. 2.6 s deviation

  23. Possible Explanations for Dam • am(exp) and am(latest theory) differ by 42(16) *10-10 • The probability for agreement is < 1% • Statistical Fluctuation • Undiscovered Error in Experiment • (not recognized systematics) • Not yet complete standard theory calculation • (hadronic contribution) • New Physics • 4 times more data on tape & data for m- being taken

  24. About 1 year’s data needed Courtesy of W. Kluge, Karlsruhe (Summer 2001)

  25. ! ! Hadronic Corrections for gm-2 ??SIGN ?? Dam(hadr.,1st order) = 6951(75)*10-11 (Davier, 1998) Dam(hadr., higherorder) = -101(6) *10-11 (Krause, 1996) Dam(hadr., light on light) = -79(15) *10-11 (Hayakawa, 1998)

  26. ~ Muon Magnetic Anomaly in Super Symmetric Models Z k ~ ~ m m m m k k g g • no constraints from dark matter • constraint through dark matter ~ ~ w w + + - - m m ~ n • At, m0 vary over • parameter space • m0 < 1TeV/c2 approximate rule : DamSUSY» 1.4 * 10-9 * [ (100 GeV/c2) /mg ]2* tan b ~ goal BNL 821: am to 0.4 * 10-9 after: U. Chattopadyay and P. Nath, 1995

  27. 2.6 s deviation 1.6 s deviation after light by light correction

  28. Note:Even if there will be a difference between muon g-2 and theory established and unquestioned, it does not carry a tag about the nature of the difference! We will need further experiments then to learn more! Such as: - searches for rare muon decays - search for a muon edm - ..............................

More Related