Rare decays at tevatron
Download
1 / 35

Rare Decays at Tevatron - PowerPoint PPT Presentation


  • 137 Views
  • Uploaded on

Rare Decays at Tevatron. Topics: 1)B  mm search at Tevatron 2) b sl + l - at Tevatron. Marco Rescigno INFN/Roma for the CDF and DØ coll. CKM06, Nagoya Dec 14 th 2006. Chicago .  p. p. 1.96 TeV. Booster. p. CDF. DØ. Tevatron.  p.  p sou rce. Main Injector

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Rare Decays at Tevatron' - cybil


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Rare decays at tevatron

Rare Decays at Tevatron

Topics: 1)Bmm search at Tevatron

2) bsl+l- at Tevatron

Marco Rescigno

INFN/Roma

for the CDF and DØ coll.

CKM06, Nagoya

Dec 14th 2006


Tevatron

Chicago

p

p

1.96 TeV

Booster

p

CDF

Tevatron

p

p source

Main Injector

& Recycler

Tevatron

M.Rescigno - Nagoya12/06


Tevatron luminosity
Tevatron Luminosity

>2 fb-1 delivered!

1.5 fb-1 good data on tape now

Analysis shown today 0.7 – 1 fb-1

M.Rescigno - Nagoya12/06


Cdf d detectors
CDF & DØ detectors

DO

  • Good muon coverage and triggering

    • DØ: |h|<2.2

    • CDF: |h|<1

  • Good momentum resolution, tracking:

    • CDF:s(MB)~25 MeV/c2

    • reduce combinatorial and Bdhh’ Bs search window contamination

  • Good Vertexing

    • CDF: L00 (rinner~1.4cm)

    • DØ: L0 upgrade (rinner~1.6cm)

CDF

M.Rescigno - Nagoya12/06


Triggers and data sample

CDF:

di-muon triggered data

Two separate search channels

Central/central muons

(CMU-CMU)

Central/forward muons

(CMU-CMX)

CMU |h|<0.6, CMX 0.6 < |h| <1

pT(m)>1.5 GeV/c

780 pb-1: Bs(Bd )mm limit

920 pb-1: Search for Bu,d,s mmh

DØ:

First 300 pb-1 di-muon triggered data

with box opened  limit

400 pb-1 data still blinded

Combined sensitivity for 700 pb-1 of recorded data (300 pb-1 + 400 pb-1 )

Bmmhsearch region

Bmmsearch region

Triggers and Data Sample

S/B is expected to be

extremely small. Effective

bkg rejection is the key

to this analysis!!

M.Rescigno - Nagoya12/06


Trigger @ high lumi

~540 Hz @ 200 E30

~320 Hz @ 200 E30

Trigger @ high lumi?

  • Clever and Clever triggering as inst. Luminosity increases

  • Keep high purity triggers alive at high luminosity

  • Full use of available bandwidth at lower inst. Luminosity with dynamically adjusted prescales

  • Hardware upgrade on the level 1 track trigger processor

    • reduce fake rate by reconstructing track segments also in the stereo layer

M.Rescigno - Nagoya12/06


B m m search at tevatron

Bm+m- search at Tevatron


Motivation

Standard Model prediction very suppressed

Sizeable New Physics enhancement predicted in many scenarios, e.g. high tanb SUSY:

Motivation

(Buchalla & Buras,

Misiak & Urban)

Any signal @ Tevatron would be New Physics !

M.Rescigno - Nagoya12/06


Strategy

Blind optimization using signal Monte Carlo sample and sideband data

Normalize to known B+J/K+

Reconstruct Normalization mode in the same data, applying same criteria  reduce systematics

Only ratio of efficiency matters

Evaluate expected background and then open the box and calculate BR or limit

Strategy

M.Rescigno - Nagoya12/06


Preselection cuts

CDF: sideband data

pT(m)>2.0 (2.2) GeV/c CMU (CMX)

pT(Bs cand.)>4.0 GeV/c

|y(Bs)| < 1

4.669 < mmm < 5.969 GeV/c2

muon quality cuts

good vertex

3D displacement L3D between primary and secondary vertex

(L3D)<150 mm

proper decay length 0 < l < 0.3cm

Pre-selection DØ:

pT(m)>2.5 GeV/c

|h(m)| < 2

pT(Bs cand)>5.0 GeV/c

4.5 < mmm < 7.0 GeV/c2

muon quality cuts

good di-muon vertex

Preselection Cuts

38k events after pre-selection

300 pb-1

M.Rescigno - Nagoya12/06


B mm signal discrimination

sideband data

Pmm

Bs mm

DR < 1

(a <57o)

Da

Pm

Pm

y

L3D

x

z

Bmm signal discrimination

  • m+m- mass

    ~±2.5s mass window (60 MeV/c2)

  • B vertex displacement:

    CDF 

    D0 

  • Isolation (Iso):

    (fraction of BmmpT within DR=(Dh2+Df2)1/2=1 cone)

  • “pointing (Da)”:

    (angle between Bs momentum and decay axis)

M.Rescigno - Nagoya12/06


Search optimization @ cdf
Search Optimization @ CDF sideband data

  • CDF construct a lilkelihood ratio LR using l, Da, Iso

  • Optimize LR cut on the expected a-priori 90% C.L. limit

  • Background PDF from data sidebands: 4.669<Mmm<5.169 GeV/c2 U 5.469<Mmm<5.969

M.Rescigno - Nagoya12/06


Search optimization @ cdf1
Search Optimization @ CDF sideband data

  • Optimal value LR > 0.99

    • Signal efficiency e(Bs) 35%

    • Background Rejection O(103)

  • LR distributions in signal and sidebands match

  • A posteriori check...

M.Rescigno - Nagoya12/06


Search optimization @ d
Search optimization @ DØ sideband data

  • Similar efficiency and background rejection

  • e(Bs) 35%

  • Optimize cuts on three discriminating variables:

    • Pointing angle

    • 2D decay length significance

    • Isolation

  • Maximize S/(1+sqrt(B))

  • B from sidebands

M.Rescigno - Nagoya12/06


Background prediction
Background prediction sideband data

  • Combinatorics: linear extrapolation from sidebands into ±60 MeV/c2 signal window for CDF (± 180 @ D0)

  • Cross check predictions using independent background enriched samples

    • Same Sign di-muons

    • Opposite Sign di-muons with Lxy<0

    • Fake muons

  • Bhh’: expected signal convoluted with muon fake rate (CDF)

M.Rescigno - Nagoya12/06


Examining signal boxes
Examining Signal Boxes sideband data

M.Rescigno - Nagoya12/06


Normalization b j k
Normalization: B sideband data+J/K+

  • Need B+J/K+ yield to extract limits

  • CDF (780 pb-1) : 4200 (CMU-CMU) + 1550 (CMU-CMX)

  • D0 (400 pb-1): 900

M.Rescigno - Nagoya12/06


Results
Results sideband data

  • No signal found…

  • CDF Bs limit (780 pb-1)

    • BR(Bsmm) < 8 ∙ 10-8 (10) @ 90% (95%)C.L.

  • DØ average expected limit (700 pb-1)

    • BR(Bsmm) < 19 ∙ 10-8 (23) @ 90% (95%)C.L.

  • CDF Bd limit (780 pb-1), world best

    • BR(Bdmm) < 2.3 ∙ 10-8 (3) @ 90% (95%) C.L.

    • compare Babar (hep-ex/0408096, 110 fb-1 )

      • BR(Bdmm) < 8.3 ∙ 10-8 @ 90% C.L.

M.Rescigno - Nagoya12/06


Impact on new physics
Impact on New Physics sideband data

  • Current constraints from Dms and Bsmm are differently effective in the new physics parameter phase space

  • Improved limits on Bsmm can further constraint SUSY at large tanb

Foster,Okumura,Roszkowski Phys.Lett. B641 (2006) 452

M.Rescigno - Nagoya12/06


Tevatron expected reach

Integrated Lumi/experiment (fb sideband data-1)

Tevatron Expected Reach

  • Based on current analysis

    • might be conservative

  • Can exclude region of low 10-8 with full Run II statistics

  • Significantly improved analysis will appear soon…

M.Rescigno - Nagoya12/06


Area of improvement
Area of Improvement sideband data

  • Improved muon selection based on additional information:

    • Energy deposition in the calorimeter

    • dE/dx in the drift chamber

  • Significant reduction in fakes expected.

  • Neural Net based final discriminant with additional background suppression power

  • Use the 2-dimensional dimuon mass-discriminant plane to evaluate signal/limit

  • Stay tuned for an updated results at winter conferences…

  • Current muon fake rate

  • Determined for Kaon and pions of each charge from high statistics D*D0K-p+ sample

M.Rescigno - Nagoya12/06


B sl l decays at tevatron

b sideband datasl+l- decays at Tevatron


Goals
Goals sideband data

  • Sensitive to New Physics (Rates and Asymmetries)

  • Bd and B+ modes established at B-factories

    • BR(B+mmK+)=0.34+0.19-0.14 x 10-6 (PDG 06)

    • BR(BdmmK*)=1.22+0.38-0.32 x 10-6 (PDG 06)

  • Re-establish signals in Tevatron data and “discover” unseen Bsmmf decays

    • BR(Bsmmf)=1.6x10-6C. Geng and C. Liu, J. Phys. G 29, 1103 (2003)

  • CDF new results with 0.92 fb-1

  • D0 published a BR(Bsmmf)limit with 0.4 fb-1

    • PRD 74, 031107 (2006)

M.Rescigno - Nagoya12/06


Strategy1
Strategy sideband data

  • Similar to the Bmm case

  • Normalize signal to analogous BJ/h (J/mm) decays

  • Blind optimization

  • Exclude J/ and ’ region

  • Sideband data for optimization and background estimate

  • Monte Carlo and data for efficiency ratios with normalization mode

M.Rescigno - Nagoya12/06


Signal selection optimization
Signal Selection Optimization sideband data

CDF/DØ similar analysis:

  • CDF optimize Nsig / sqrt(Nsig+Nbkg)

  • DØ optimize Nsig / (1 + sqrt(Nbkg) )

M.Rescigno - Nagoya12/06


B u d results
B sideband datau,d Results

  • For all modes:

    • pT(B)>4.0 GeV/c

    • pT(h)>1.0 GeV/c

  • |mKp-mK*|<50 MeV/c2

  • |mKk-mf|<10 MeV/c2

  • Counting events in 2s window around B mass, excesses seen in all modes

  • Background from 3-9 s sideband extrapolated to signal window

    • Fit shown for illustration purpose

M.Rescigno - Nagoya12/06


B s results
B sideband datas Results

  • CDF (920 pb-1):

    • 11 candidates found

    • 3.5±1.5 expected background

    • 2.4 s significance

  • DØ (400 pb-1)

    • 0 observed

    • 1.6±0.6 expected

M.Rescigno - Nagoya12/06


Br b mm h
BR (B sideband datammh)

  • Good agreement & similar uncertainty with:

    • Babar PRD 73, 092001 (2006) (208 fb-1 ~10 mmK+, ~15mmK*0)

    • Belle hep-ex/0410006 (250 fb-1 ~40 mmK+, ~40mmK*0)

  • BR(B+mmK+) = [0.72 ± 0.15(stat.) ± 0.05(sys.)]x10-6 (45 ev.)

  • BR(B0mmK*) = [0.82 ± 0.31(stat.) ± 0.10(sys.)]x10-6 (20 ev.)

  • BR(Bsmmf) <2.4 x10-6 @ 90% C.L.

    = [1.16± 0.56(stat.) ± 0.42(sys.)]x10-6

    • Improve upon DØ limit (400 pb-1) BR(Bsmmf) < 3.3 x 10-6 @ 90% C.L.

M.Rescigno - Nagoya12/06


Summary
Summary sideband data

  • CDF/DØ analyzed ~800 pb-1 of Run II data searching for Bmm signal:

    • Current limits in the 10-8 territory

    • No major obstacle in pushing down limits with increasing exposure

    • Significantly improved analysis with >1 fb-1 data sample

  • Constraining more & more New Physics…

  • CDF/DØ entering the bsll arena:

    • New solid B+mmK signal from CDF

    • A 2.4 s excess in the Bsmmf reported from CDF

      • U.L. limit close to SM prediction

  • 1.5 fb-1 on tape: more to come…

M.Rescigno - Nagoya12/06


BACKUP sideband data

M.Rescigno - Nagoya12/06


Mb vs likelihood ratio
MB vs Likelihood Ratio sideband data

M.Rescigno - Nagoya12/06


D0 SENSITIVITY FOR 700 pb sideband data-1

Used now in addition!

Used in previous analysis

  • Obtain a sensitivity (w/o unblinding) w/o changing the analysis

  • Combine “old” Limit with obtained sensitivity

(400 pb-1)

Cut Values changed

only slightly!

Expect 2.2 ± 0.7

background events

M.Rescigno - Nagoya12/06


Signal m mm spectra
Signal m sideband datamm Spectra

  • Mass spectra not corrected for efficiency/background

  • Resonance veto:

    • 2.9<mmm<3.2 (J/)

    • 3.6<mmm<3.75 (’)

    • D (D+,Ds) any 2(3) track combination within 25 MeV of PDG mass

M.Rescigno - Nagoya12/06


NORMALIZATION MODES sideband data

NB+ = 6246

NB0 = 2346

NBs = 421

Apply similar pre-selection requirements

as Bmm analysis

450 pb-1

Clean samples

of norm events

M.Rescigno - Nagoya12/06


Cdf trigger architecture

Crossing: 396 ns: 2.5 MHz sideband data

Level 1: hardware

Calorimeter, Muon, Tracks

30kHz (reduction ~x100)

Level 2: hardware + CPU

Cal cluster, Silicon tracks

900 Hz (reduction ~x60)

Level 3: Linux PC farm

~ Offline quantities

100 Hz (reduction ~ x5)

CDF trigger architecture

M.Rescigno - Nagoya12/06


ad