9 4 inequalities and absolute value
This presentation is the property of its rightful owner.
Sponsored Links
1 / 13

9.4: Inequalities and Absolute Value PowerPoint PPT Presentation


  • 46 Views
  • Uploaded on
  • Presentation posted in: General

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×. × ÷ × ÷ × ÷ ×. × ÷ × ÷ × ÷ ×. 9.4: Inequalities and Absolute Value. Pilar Alcazar Period 1. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×. Equation: |3x+2/4|≤ 5.

Download Presentation

9.4: Inequalities and Absolute Value

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


9 4 inequalities and absolute value

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

×

÷

×

÷

×

÷

×

×

÷

×

÷

×

÷

×

9.4: Inequalities and Absolute Value

Pilar Alcazar

Period 1

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 3x 2 4 5

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |3x+2/4|≤ 5

  • Since there is a fraction with a denominator of 4, you need to multiply both sides of the equation by 4 or 4/1. Also, the absolute value means you need to do a positive and negative version of the equation.

    3x+2/4≤ 5|3x+2/4 ≥ -5

    x4/1 x4|x4x4

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 3x 2 4 51

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |3x+2/4|≤ 5

2. Now, you need to subtract 2 from both sides of the equation because there is a 2 added onto the 3x. Add 2 to both sides of the second equation because the 2 is negative.

3x+2≤ 20| 3x+2≥ -20

-2-2|-2 -2

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 3x 2 4 52

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |3x+2/4|≤ 5

3. Now you want to get the x all by itself. You need to divide both sides by 3 to isolate x. In the second equation, divide both sides by negative three and flip the sign from ≥ to ≤.

3x≤ 18| 3x≥ -22

÷3 ÷3|÷3÷3

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 3x 2 4 53

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |3x+2/4|≤ 5

4. Since x is now isolated, you are finished with the equation.

x ≤ 6| x ≥ -22/3

Answer: {x|-22/3≤x≤6}

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Critical thinking write an absolute value inequality to describe each of the graphs below

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Critical Thinking:Write an absolute value inequality to describe each of the graphs below.

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Since the graph only goes to 4 and 2 the inequality would be x 4 x 2

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Since the graph only goes to -4 and 2, the inequality would be {x|-4≤x≤2}.

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Since the graph is less than 2 or greater than 3 the inequality would be x x 2 or x 3

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Since the graph is less than -2 or greater than 3, the inequality would be {x|x<-2 or x>3}.

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 2b 4 5

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |2b-4|< -5

1. Since this is an absolute value equation, you need to write it in a positive and negative form.

2b-4< -5 | 2b-4> 5

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 2b 4 51

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |2b-4|< -5

2. Now you need to isolate the number that is multiplied onto b and b itself by either adding or subtracting.

2b-4< -5 | 2b-4> 5

+4+4|+4+4

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 2b 4 52

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |2b-4|< -5

3. Now you need to isolate b by dividing by the number that is multiplied onto it.

2b<-1| 2b>9

÷2 ÷2| ÷2 ÷2

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Equation 2b 4 53

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

Equation: |2b-4|< -5

  • Now that b is by itself, you have your answer.

    b<-1/2| b>9/2

    Answer: {b|b<-1/2 or b>9/2}

    If you go back and plug the answer in, you find out that these solutions do not validate. Therefore, there is no solution.

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×


Thanks for watching

Thanks for Watching!


  • Login