1 / 37

Heavy-Flavor Interactions in Medium

Heavy-Flavor Interactions in Medium. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on Heavy-Quark Physics in Heavy-Ion Collisions ECT* (Trento, Italy), 16.-20.03.15.

cviolet
Download Presentation

Heavy-Flavor Interactions in Medium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on Heavy-Quark Physics in Heavy-Ion Collisions ECT* (Trento, Italy), 16.-20.03.15

  2. 1.) Introduction: A “Calibrated” QCD Force V [½GeV] [Kaczmarek et al ‘03] r [½ fm] • Vacuum charm-/bottomonium spectroscopy well described • Confinement ↔ linear part of potential • non-perturbative treatment in medium • lattice QCD, potential/T-matrix approach, AdS/CFT, … • relate quarkonia kinetics and heavy-flavor diffusion

  3. 1.2 Objectives with Heavy Flavor in URHICs • Determine modifications of QCD force in medium • + infer consequences for the many-body system • Open heavy-flavor diffusion: Brownian motion • - Scattering rates in QGP: widths, quasiparticles? (mQT) • - Transport/thermalization: type of interaction (non/pert.,dofs,…) • Quarkonia kinetics • - Screening of confining (≥Tc?) + Coulomb (≥2Tc?) force • - ϒ states: sequential melting • - ψ states: sequential recombination

  4. Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions

  5. 2.1 Free and Internal Energy in Lattice QCD F1(r,T) = U1(r,T) – T S1(r,T) Free Energy Internal Energy - - • “strong”QQ potential,U = ‹Hint› • large DmQ ~ U1(∞,T)/2 • “weak”QQ potential • small DmQ~ F1(∞,T)/2 • F, U, Sthermodynamic quantities • Entropy: many-body effects

  6. 2.2 Reconstructed Potential from Lattice QCD • static potential from Wilson loop correlator: Real Part Imaginary Part • real part ~ singlet free energy • imaginary part ~ HTL perturbative  strongly coupled QGP? [Burnier et al ’14]

  7. 2.3 Thermodynamic T-Matrix in QGP • Lippmann-Schwinger equation In-Medium Q-QT-Matrix: - • thermal 2-particle propagator: • selfenergy: • In-medium potential V? q,g SQ = [Cabrera+RR ’06, Riek+RR ‘10]

  8. 2.3.2 Free Energy from T-Matrix • Free Energy [Beraudo et al ’08] • Euclidean T-matrix in static limit [S.Liu+RR in progress] • Spectral Function [S.Liu+RR ’15] • Key ingredients: imaginary parts + their w dependence • heavy-quark selfenergies from previous T-matrix calculations

  9. 2.3.3. Free + Internal Energy from T-Matrix • potential ansatz: U V F lattice data 1.2 Tc 1.5 Tc 2 Tc r [fm] r [fm] r [fm] • remnant of long-range “confining” force in QGP • smaller in-medium quark mass relative to internal energy

  10. 2.3.4 Brueckner Theory of Heavy Flavor in QGP InputProcessOutputTest quark-no. susceptibility lattice-QCD free energy Q → Q 0-modes lattice data spectral fcts./ eucl. correlat. - 2-body potential QQ T-matrix - QQ evolution (rate equation) Qq T-matrix Quark selfenergy exp. data Q spectra + v2 (Langevin)

  11. Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψPuzzle(s) 5.) Conclusions

  12. 3.1 Heavy-Light Scattering Amplitudes New Potential VU-Potential - c-q • “confining” force induces “Feshbach resonances” in QqT-matrix • strength comparable to internal-energy (U) potential

  13. 3.2 Charm-Quark Relaxation Rates • heavy-light T-matrix → HQ transport: Relaxation Rate Diffusion Coefficient gc[1/fm] p [GeV] [S.Liu+RR in prep] • tc ≈ 3 fm/c close to Tc at low p • 3-mom. + temperature dependence reflect core properties of QCD!

  14. 3.3 D-Meson Transport in Hadronic Matter gD[fm-1] • effective D-h scattering amplitudes [He,Fries+RR ’11] • hadron gas at ~Tc: tD≈ 10fm/c • consistent with: • - unitarized HQET (pion gas) • - recent works in HRG using similar • methods [Cabrera et al ‘11] [Tolos+Torres-Ricon ’13, Ozvenchuk et al ‘14] gD[fm-1]

  15. 3.4 Summary of Charm Diffusion in Matter Ds=T/mg : Hadronic Matter vs. QGP vs. Lattice QCD [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/QCD[Gubser ‘07] • shallow minimum near Tc • Quark-Hadron continuity?

  16. 3.5 Heavy-Flavor Transport in URHICs 0 0.5 5 10 | | | | t [fm/c] D c • initial cond. • (shadowing, • Cronin), • pre-equil. fields • c-quark diffusion • in QGP liquid • c-quark • hadronization • D-meson • diffusion in • hadron liquid • no “discontinuities” in interaction • diffusion toward Tpcand hadronization same interaction (confining!)

  17. 3.6 Heavy-Flavor Electrons at √s=62GeV • uncertainties in pp baseline • interplay of Cronin (pA!) + collective flow • sizable medium effects in RCP + v2

  18. Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψPuzzle(s) 5.) Conclusions

  19. 4.) Charmonium: y(3686) • easily dissociated in hadronic matter: • p, r, ... +y→DD, y→DmedDmed [Grandchamp +RR ‘02] [PBM+Stachel ‘00] • hadronic y dissociation at SPS important ingredient for transport models [Sorge et al ‘97, …]

  20. 4.2 Charmonia in d+Au Fireball • construct fireball + evolve rate equat. → y suppression from hot medium • similar in spirit to comover approach • formation time effects?! [Ferreiro ‘14] [X.Du+RR, in prep] [Y.Liu, Ko et al ‘14]

  21. 4.3.1 Sequential Recombination of Charmonia in AA Time Evolution pT Spectra • smaller binding → smaller Tdiss→ y forms later than J/ψ! • harder blast wave for ψformed at later times (hadronic phase!) [X.Du+RR, in prep]

  22. 4.3.2 Sequential Recombination vs. Dissociation ψ / J/ψDouble Ratio Nuclear Modification Factor RAA ψ / RAA J/ψ • ψblast wave fills pt = 3-6 GeV region, primordial for pt > 6 GeV • helps explain CMS double-ratio puzzle • more complex in practice … [X.Du+RR, in prep]

  23. 5.) Conclusions • Heavy-quark potential in QGP from lQCD F: Bayesian, T-matrix - Large imaginary parts - Remnants of confinement generate strong coupling • “Critical” consequences for heavy-flavor diffusion • Continuity + minimum of transport coefficient through Tpc • No principal difference between diffusion forces + hadronization • Sequential recombination of charmonia?! (↔ pA)

  24. D - D J/y - c c J/y 3.) Quarkonium Transport in Heavy-Ion Collisions [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] • Inelastic Reactions: detailed balance: → - ← J/y + g c + c + X • Rate • Equation: • Theoretical Input: Transport coefficients • - chemical relaxation rate Gy • - equililbrium limit Nyeq(eyB, mc* ,tceq) • Phenomenological Input: • - J/y,cc,y’+c,b initial distributions [pp, pA] • - space-time medium evolution [AA: hydro,...] Observables

  25. 3.1 Thermal Charmonium Properties (a) EquilibriumYnumber: - • gc from fixed cc number: • interplay of mc* and • constrain spectral shape by lattice-QCD correlators eyB mc* (b) Inelastic YWidth q q • controlled by as(parameter) Gy

  26. 3.3 Inclusive J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10] • Fix two main parameters: as~0.3, charm relax. tceq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix

  27. 3.4 J/y Excitation Function: BES at RHIC PHENIX (forward y) STAR (central y) [Grandchamp +RR ’02] • suppression pattern varies little (expected from transport) • quantitative pp + pA baseline critical to extract systematics

  28. 3.5 J/y Predictions at LHC [Zhao+RR ‘11] • regeneration becomes dominant • uncertainties in scc+shadowing • low pT maximum confirms regeneration • too much high-pT suppression?

  29. 3.6 (1S) and (2S) at LHC Weak Binding Strong Binding (1S) → (2S) → • sensitive to color-screening + early evolution times • clear preference for strong binding (U potential) • similar results by • possible problem in rapidity dependence [Grandchamp et al ’06, Emerick et al ‘11] [Strickland ‘12]

  30. 3.7 Summary of Phenomenology • Quarkonium discoveries in URHICs: • - increase of J/yRAASPS, RHIC → LHC • - low-pT enhancement • - sizable v2 • - increasing suppression of ’ (eB’~ eBJ/y) • Fair predictive power of theoretical modeling - based on description of SPS+RHIC with 2 main parameters • Implications - T0 SPS(~230) < Tdiss(J/y,’) < T0RHIC (~350) < T0LHC(~550) ≤ Tdiss() - confining force screened at RHIC+LHC - marked recombination of diffusing charm quarks at LHC

  31. 3.2.2 J/y at LHC: v2 [He et al ’12] • further increase at mid-y

  32. 3.1.2 J/y pT Spectra + Elliptic Flow at RHIC (strong binding) • shallow minimum at low pT • high pT: formation time, b feeddown, Cronin • small v2limits regeneration, but does not exclude it

  33. 3.2.2 D-Meson Thermalization at LHC • to be determined…

  34. 3.3.4 Time Evolution of J/y at LHC Strong Binding (U) Weak Binding (F) • finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11]

  35. 4.3 J/y at Forward Rapidity at RHIC [Zhao+ RR ‘10]

  36. 3.2 Incomplete c-Quark Thermalization • Relaxation time ansatz: Nyeq (t) ~ Nytherm(t) · [1-exp(-t/tceq)] Microscopic Calculation Impact on Regeneration [Zhao+RR ‘11] [Song,Han, Ko ‘12] • regeneration sensitive to charm-quark spectra

  37. 3.6.1 Heavy-Flavor Electrons at √s=62GeV Hydro Tune • importance of flow + Cronin effect • at lower energies

More Related