1 / 50

REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW

REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW. W.9 7. Maja 2009 r. Mechanika i budowa maszyn Wydział Mechaniczny Technologiczny Politechnika Śląska. Elementy hydrauliki. Elementy hydrauliki.

cutter
Download Presentation

REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. REAKCJA DYNAMICZNA PŁYNUMECHANIKA PŁYNÓW W.9 7. Maja 2009 r. Mechanika i budowa maszyn Wydział Mechaniczny Technologiczny Politechnika Śląska

  2. Elementy hydrauliki

  3. Elementy hydrauliki Poruszający się płyn napotykając na drodze przeszkodę w postaci ciała sztywnego wywołuje na jego powierzchni reakcję dynamiczną jako wypadkową pola ciśnień. Przez dS z jaką płyn działa na sztywną ścianę wynosi: (1) gdzie: τ – jest naprężeniem stycznym, przy uwzględnieniu lepkości płynu, - jest wersorem stycznym do powierzchni S

  4. Elementy hydrauliki Siła przeciwnie skierowana = - nazywa się reakcją dynamiczną strumienia. Wektor główny sił powierzchniowych działającychw obszarze V określony jest wzorem : (2)

  5. Elementy hydrauliki Wektor główny sił statycznych, wywołanych polem ciśnień, określa zależność: (3) Równanie równowagi kinetostatycznej przepływu płynu zgodnie z zasadą pędu ma postać: (4) gdzie jest składową normalną wektora prędkości do powierzchni S.

  6. Elementy hydrauliki Reakcję dynamiczną strumienia swobodnego, przy pominięciu sił powierzchniowych i masowych, określa zależność: (5) gdzie jest elementarnym natężeniem przepływu przez powierzchnię ds. Jeżeli przyjmiemy jednorodne pole prędkości dla strugi, to całka we wzorze (5) jest równa różnicy wektorów pędów: (6) gdzie:

  7. Elementy hydrauliki Korzystając z zależności geometrycznych (rys.1) można wyznaczyć moduł reakcji dynamicznej przy jednakowych natężeniach przepływów: (7) gdzie:

  8. Elementy hydrauliki R Rys. 1. Rozkład reakcji strumienia

  9. Elementy hydrauliki Korzystając z twierdzenia cosinusów obliczono również wartość reakcji R: (8)

  10. Elementy hydrauliki Zakładając różne pola przekrojów przewodów oraz różne prędkości przepływów , można z zależności geometrycznych ustalić wartość wypadkowej reakcji: (9) gdzie:

  11. Elementy hydrauliki W szczególności dla kąta α = : gdzie: jest ilorazem pól przekrojów poprzecznych przewodów.

  12. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju

  13. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju Rozpatrzmy przepływ płaski płynu przez nieprostoliniowy przewód o zmiennym przekroju (Rys.2): Rys.2. Rozkład obciążeń przewodu

  14. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju Na wejściu przewodu o polu przekroju płyn posiada prędkość , natomiast na wyjściu o polu przekroju prędkość . W przekrojach A, B przewodu płyn idealny określony jest wektorami pędów: (10)

  15. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju Różnica wektorów pędów jest równa reakcji dynamicznej strumienia: (11) Z uwagi na prawo ciągłości przepływu zachodzi warunek: (12)

  16. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju Wypadkowa reakcja dynamiczna strumienia jest przyłożona w punkcie A określonym przez przecięcie kierunku wektora pędu z konturem przewodu ilustruje (Rys.3) wraz z wyznaczonym kierunkiem reakcji , który jest przesunięty równolegle do punktu A. Wektor reakcji dynamicznej rozkładamy następnie na składowy wektor poziomy i pionowy w kierunku osi x, y, układu współrzędnych. Wartość reakcji dynamicznej można obliczyć ze wzorów (9) i (10)

  17. Reakcja dynamiczna strumienia w przewodzie nieprostoliniowym o zmiennym przekroju Rys.3. Rozkład obciążeń przewodu

  18. PRZYKŁAD 1

  19. PRZYKŁAD 1 Wyznaczyć wartość i kierunek reakcji dynamicznej działającej na przewód z dwoma rozgałęzieniami pod kątem α (rys. 4). Natężenie przepływu w przewodzie wejściowym 0-1 wynosi Q. Ciśnienie płynu w przekroju 0 wynosi . Rys.4. Rozkład obciążeń przewodu hydraulicznego

  20. PRZYKŁAD 1 ROZWIĄZANIE: Z prawa ciągłości przepływu wynika wzór: (a) gdzie:

  21. PRZYKŁAD 1 Korzystając z bilansu energii kinetycznej dla przewodów: gdzie: (b)

  22. PRZYKŁAD 1 Rozwiązując układ równań (a) i (b) obliczono wartości prędkości , w przewodach rozgałęźnika: (c)

  23. PRZYKŁAD 1 gdzie:

  24. PRZYKŁAD 1 Reakcje dynamiczne w odcinkach przewodu posiadają wartości: Wektory tych reakcji zaznaczono na rys.5.

  25. PRZYKŁAD 1 Rys.5. Rozkład obciążeń przewodu hydraulicznego

  26. PRZYKŁAD 1 Ich suma daje wektor reakcji strumienia R. Przecinając kierunek reakcji ze ścianką przewodu 0-1 wyznaczono punkt A zaczepienia siły wypadkowej R. Wartość reakcji wynosi przy tym: (f) natomiast reakcji wypadkowej R: (g)

  27. PRZYKŁAD 1 gdzie: oraz

  28. REAKCJA PRZY UDERZENIU STRUMIENIA O PRZEGRODĘ

  29. Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę Zagadnienie to należy rozpatrzyć oddzielnie jako: • Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę • Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny

  30. Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę Założono, że struga płynu porusza się poziomo i uderza o nieruchomą przeszkodę w postaci płaskiej pionowej ściany ustawionej prostopadle (Rys.6), Rys.6. Rozkład obciążeń strumienia przy uderzeniu o ścianę nieruchomą ustawioną prostopadle

  31. Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę Pole powierzchni ściany jest znacznie większe od pola przekroju S strugi. Struga uderzając w ścianę ustawioną prostopadle rozpływa się na powierzchni ściany. Pęd strugi określa reakcję dynamiczną po przemnożeniu przez natężenie przepływu Q: (13) Nie występuje przy tym reakcja styczna do ściany.

  32. Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę lub ukośnie, pod kątem α do poziomu (rys.7). Rys.7. Rozkład obciążeń strumienia przy uderzeniu o ścianę nieruchomą ustawioną ukośnie

  33. Reakcja dynamiczna przy uderzeniu o nieruchomą przegrodę W przypadku uderzenia strugi o ścianę pochyłą reakcja dynamiczna posiada kierunek prostopadły do ściany o wartości odpowiadającej rzutowi wektora pędu: (14) Składowa styczna reakcji: (15)

  34. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Założono, że struga o polu przekroju S z prędkością ν uderza w przegrodę, przemieszczającą się z prędkością u (rys.8). Rys.8. Rozkład oddziaływań na ścianę zakrzywioną ruchomą

  35. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Reakcja strumienia o natężeniu przepływu Q posiada wartość: (16) gdzie: jest prędkością względną.

  36. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Z prawa ciągłości przepływu wynika równość: (17) stąd (18) Podstawiając (18) do równości (16) określono reakcję dynamiczną strumienia. (19)

  37. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Maksymalna wartość reakcji występuje dla i wynosi: Moc strumienia wynosi: (20)

  38. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny W drugim przypadku rozpatrzono uderzenie strumienia cieczy o ścianę zakrzywioną, stanowiącą model łopatki turbiny (Rys.9) Rys.9 Rozkład oddziaływań na ścianę zakrzywioną

  39. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Reakcję dynamiczną strumienia wyznaczono z zasady pędu strumienia i stanowi ona wektor: (21) gdzie: (22) Składowe wektora prędkości w układzie współrzędnych (x, y) wynoszą: (23)

  40. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Na tej podstawie wyznaczono składowe reakcji dynamicznej: (24) Moduł reakcji dynamicznej wynosi: (25) (26)

  41. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Wektor reakcji jest nachylony do poziomu pod kątem: (27) Moc reakcji strumienia przy uderzeniu o łopatkę wynosi: (28) Składowa pionowa posiada moc równą zero.

  42. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Maksymalna wartość reakcji strumienia występuje dla kąta α=180˚ i wynosi: (29) Przyjmując prędkość otrzymano maksymalną wartość reakcji i mocy strumienia dla kąta α = 180˚: (30)

  43. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Rozwiązaniem technicznym, wykorzystującym maksymalną moc strumienia przepływu, jest turbina Eltona, w której kąt rozwarcia łopatki jest jednak mniejszy niż 180˚ (rys.10). Rys.10. Rozkład obciążeń dla łopatki Peltona

  44. Reakcja dynamiczna strumienia o ruchomą ścianę i łopatkę turbiny Turbina wodna Eltona jest złożona z dwóch łopatek, tworząc figurę symetryczną. Łopatka ta znalazła dość szerokie zastosowanie w urządzeniach technicznych związanych z turbiną Peltona. Rys.11. Turbina wodna Peltona

  45. PRZYKŁAD 2

  46. PRZYKŁAD 2 Obliczyć reakcję dynamiczną strumienia wody przepływającego przez kołowy otwór w ścianie nachylonej do poziomu pod kątem α do przewodu o średnicy d, jeżeli prędkość strumienia wynosi ν (rys.12) Rys.12. Rozkład obciążeń strugi

  47. PRZYKŁAD 2 ROZWIĄZANIE: Natężenie przepływu: Reakcje strumienia wody wpływającej do otworu oraz wypływającej są równe i wynoszą: Całkowita reakcja strumienia jest różnicą obydwu wektorów:

  48. PRZYKŁAD 2 Składowe reakcji w kierunkach osi x, y wynoszą : Całkowita reakcja strumienia posiada wartość:

  49. PRZYKŁAD 2 Maksymalna wartość reakcji: dla α = 180˚ Minimalna wartość reakcji: dla α = 0 Obliczono moc strumienia:

  50. PRZYKŁAD 2 oraz moc maksymalną: dla α = 180˚ Reakcja jako wypadkowa posiada położenie zaznaczone na rys.13. Rys.13. Rozkład obciążeń strugi

More Related