Partially post tensioned precast concrete walls
This presentation is the property of its rightful owner.
Sponsored Links
1 / 40

Partially Post-Tensioned Precast Concrete Walls PowerPoint PPT Presentation


  • 105 Views
  • Uploaded on
  • Presentation posted in: General

Partially Post-Tensioned Precast Concrete Walls. Yahya C. (Gino) Kurama Assistant Professor University of Notre Dame Notre Dame, Indiana, USA. American Concrete Institute Spring 2003 Convention Vancouver, Canada April 2, 2003. POST-TENSIONED PRECAST CONCRETE WALL. anchorage. wall panel.

Download Presentation

Partially Post-Tensioned Precast Concrete Walls

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Partially post tensioned precast concrete walls

Partially Post-TensionedPrecast Concrete Walls

Yahya C. (Gino) Kurama

Assistant Professor

University of Notre Dame

Notre Dame, Indiana, USA

American Concrete Institute Spring 2003 Convention

Vancouver, Canada

April 2, 2003


Post tensioned precast concrete wall

POST-TENSIONED PRECAST CONCRETE WALL

anchorage

wall panel

horizontal

joint

unbonded

PT bars

spiral

reinforcement

foundation

spiral

bonded

unbonded

reinforcement

wire mesh

PT bar

precast wall with full PT


Behavior under lateral loads

BEHAVIOR UNDER LATERAL LOADS

gap opening


Hysteretic behavior

HYSTERETIC BEHAVIOR

base shear, kips (kN)

800

(3558)

roof drift, %

1

-2

2

-1

0

-800

(-3558)


Partially post tensioned precast concrete walls

VERTICALLY JOINTED WALLS

friction or metallic-yield damper

Priestley et al.

Perez et al.

Kurama

Pall et al.


Displaced shape

DISPLACED SHAPE


Partially post tensioned precast concrete walls

WALLS WITH PARTIAL POST-TENSIONING

unbonded

PT bar

bonded

mild

bar

unbonded

bonded

mild bar

PT bar

precast wall with partial PT


Energy dissipation

mild steel

yielding

ENERGY DISSIPATION


Partially post tensioned precast frame

PARTIALLY POST-TENSIONED PRECAST FRAME

column

fiber reinforced grout

trough

mild steel bar

beam

PT tendon

beam-to-column joint

Cheok et al.

Priestley et al.

Stanton et al.

Nakaki et al.


Objectives

OBJECTIVES

  • Investigate precast wall systems with PT steel and mild steel

  • Develop seismic design approach

  • Evaluate seismic response


Partially post tensioned precast concrete walls

OUTLINE

  • Prototype walls and expected behavior

  • Seismic design approach and evaluation

  • Summary and conclusions


Partially post tensioned precast concrete walls

PROTOTYPE WALLS

  • Four fully post-tensioned walls

  • Four walls with only mild steel (emulative walls)

  • Four partially post-tensioned walls


Plan layout of prototype buildings

PLAN LAYOUT OF PROTOTYPE BUILDINGS

8 x 24 ft = 192 ft (58.5 m)

hollow-

lateral load

gravity load

core

frame

frame

panels

40 + 30 + 40 = 110 ft

(33.5 m)

wall

inverted

column

L-beam

T-beam

N

4 story building, high seismicity

6 story building, high seismicity

10 story building, high seismicity

6 story building, medium seismicity


Fully post tensioned walls

FULLY POST-TENSIONED WALLS

133 ft

(41 ft)

81 ft

81 ft

(25 ft)

(25 ft)

55 ft

(17 ft)

26 ft (8 m)

20 ft (6 m)

20 ft (6 m)

20 ft (6 m)

4 story

high seismicity

6 story

high seismicity

10 story

high seismicity

6 story

medium seismicity


Fully post tensioned walls1

FULLY POST-TENSIONED WALLS

C

C

L

L

#3 spirals

#3 spirals

Ap=1.49in2 (961mm2)

Ap=1.49in2 (961mm2)

fpi=0.60-0.65fpu

rsp=7.3%

fpi=0.60-0.65fpu

rsp=7.3%

12in.

12in.

(305mm)

(305mm)

10 ft (3 m)

10 ft (3 m)

Wall PH4

Wall PH6

C

C

L

L

#3 spirals

#3 spirals

Ap=1.49in2 (961mm2)

Ap=1.49in2 (961mm2)

fpi=0.60-0.65fpu

rsp=7.3%

fpi=0.625fpu

rsp=1.8%

12in.

12in.

(305mm)

(305mm)

13 ft (4 m)

10 ft (3 m)

Wall PH10

Wall PM6


Emulative walls

EMULATIVE WALLS

No. 8 bars

No. 5 bars

No. 8 bars

No. 5 bars

16 pairs

5 pairs

15 pairs

5 pairs

C

C

L

L

@ 18 in.

@ 2.5 in.

@ 2.25 in.

@ 18 in.

(@ 57 mm)

(@ 457 mm)

(@ 63 mm)

(@ 457 mm)

12in.

12in.

(305mm)

(305mm)

10 ft (3 m)

10 ft (3 m)

Wall EH4

Wall EH6

No. 6 bars

No. 5 bars

No. 8 bars

No. 5 bars

7 pairs

5 pairs

20 pairs

6 pairs

C

C

L

L

@ 5.25 in.

@ 18 in.

@ 2.25 in.

@ 18 in.

(@ 57 mm)

(@ 457 mm)

(@ 133 mm)

(@ 457 mm)

12in.

12in.

(305mm)

(305mm)

10 ft (3 m)

13 ft (4 m)

Wall EM6

Wall EH10


Partially post tensioned walls

PARTIALLY POST-TENSIONED WALLS

No. 5 bars

No. 5 bars

No. 8 bars

No. 5 bars

C

7 pairs

5 pairs

C

7 pairs

5 pairs

L

L

@ 5.5 in.

@ 18 in.

@ 5.5 in.

@ 18 in.

(@ 140 mm)

(@ 457 mm)

(@ 140 mm)

(@ 457 mm)

12in.

12in.

(305mm)

(305mm)

10 ft (3 m)

10 ft (3 m)

Wall HH6-25

Wall HH6-50

No. 8 bars

No. 5 bars

No. 5 bars

11 pairs

5 pairs

C

8 pairs

C

L

L

@ 3.5 in.

@ 18 in.

@ 17 in.

(@ 89 mm)

(@ 457 mm)

(@ 432 mm)

12in.

12in.

(305mm)

(305mm)

10 ft (3 m)

10 ft (3 m)

Wall HH6-75

Wall HM6-50


Analytical wall model

ANALYTICAL WALL MODEL

stress, ksi (MPa)

100 (690)

truss

element

0

MILD STEEL

-100 (690)

-0.08

0

0.08

fiber

element

strain

stress, ksi (MPa)

stress, ksi (MPa)

7 (48)

160 (1103)

120 (827)

kinematic

constraint

strain

0

0

0.006

0.0351

strain

PT STEEL

CONCRETE


Wall behavior under monotonic loads

WALL BEHAVIOR UNDER MONOTONIC LOADS

base shear, kips (kN)

base shear, kips (kN)

1000

1500

(4448)

(6672)

Wall PH6

Wall HH6-25

Wall HH6-50

Wall PH4

Wall HH6-75

Wall EH4

Wall EH6

0

3

0

3

roof drift, %

roof drift, %

base shear, kips (kN)

base shear, kips (kN)

1000

500

(4448)

(2224)

Wall PM6

Wall PH10

Wall HM6-50

Wall EH10

Wall EM6

0

0

3

2

roof drift, %

roof drift, %


Six story walls in high seismicity

Wall HH6-25

Wall HH6-50

SIX STORY WALLS IN HIGH SEISMICITY

base shear, kips (kN)

base shear, kips (kN)

base shear, kips (kN)

1000

Wall PH6

(4448)

0

(-4448)

-1000

0

3

0

3

0

3

-3

-3

-3

roof drift, %

roof drift, %

roof drift, %

base shear, kips (kN)

base shear, kips (kN)

1000

1000

Wall EH6

Wall HH6-75

(4448)

(4448)

0

0

(-4448)

(-4448)

-1000

-1000

0

3

3

0

-3

-3

roof drift, %

roof drift, %


Normalized inelastic energy dissipation

NORMALIZED INELASTIC ENERGY DISSIPATION

base shear, kips (kN)

1000

(4448)

ksec

Dh

-Dc

Dh

0

=

dh

-Dc

Ue

Ue

(-4448)

-1000

-3

0

3

roof drift, %


Normalized inelastic energy dissipation1

NORMALIZED INELASTIC ENERGY DISSIPATION

(dh = Dh / Ue)

(dh = Dh / Ue)

2

2

Wall PH6

Wall PH4

Wall HH6-25

Wall EH4

Wall HH6-50

1.5

1.5

Wall HH6-75

Wall EH6

1

1

0.5

0.5

0

0

3

3

cycle roof drift, %

cycle roof drift, %

(dh = Dh / Ue)

(dh = Dh / Ue)

2

2

Wall PH10

Wall PM6

Wall EH10

Wall HM6-50

1.5

1.5

Wall EM6

1

1

0.5

0.5

0

0

2

3

cycle roof drift, %

cycle roof drift, %


Dynamic response

DYNAMIC RESPONSE

roof drift, %

roof drift, %

2.5

2.5

NOSY

PH6

PH4

HH6-25

EH4

PGA=0.97g

0

0

HH6-50

NOSY

HH6-75

EH6

PGA=0.97g

-2.5

-2.5

0

15

0

15

time, seconds

time, seconds

roof drift, %

roof drift, %

2.5

1.5

PH10

NOSY

EH10

PGA=0.39g

0

0

PM6

HM6-50

NOSY

EM6

PGA=0.97g

-1.5

-2.5

0

15

0

15

time, seconds

time, seconds


Reduction in maximum roof drift

REDUCTION IN MAXIMUM ROOF DRIFT

normalized maximum roof drift

1.0

0.8

0.6

0.4

PH6

HH6-25

HH6-50

HH6-75

EH6

0.2

average

0

0

0.2

0.4

0.6

0.8

1

normalized mild steel ratio


Reduction in number of drift peaks

REDUCTION IN NUMBER OF DRIFT PEAKS

average number of drift peaks

average number of drift peaks

8

8

WALL PH6

WALL PH4

WALL HH6-25

WALL EH4

6

6

WALL HH6-50

WALL HH6-75

4

4

WALL EH6

2

2

0

0

0.5

1

0.5

1

normalized amplitude of drift peak

normalized amplitude of drift peak

average number of drift peaks

average number of drift peaks

8

8

WALL PH10

WALL PM6

6

6

WALL EH10

WALL HM6-50

WALL EM6

4

4

2

2

0

0

0.5

1

0.5

1

normalized amplitude of drift peak

normalized amplitude of drift peak


Partially post tensioned precast concrete walls

OUTLINE

  • Prototype walls

  • Expected behavior

  • Seismic design approach and evaluation

  • Summary and conclusions


First mode representation

roof drift, %

1.5

total

first mode

0

Wall HW1

SAC LA25, PGA=0.87g

-1.5

0

4

8

12

16

time, seconds

FIRST MODE REPRESENTATION


Partially post tensioned precast concrete walls

SDOF REPRESENTATION

MDOF MODEL

SDOF MODEL

base shear, kips (kN)

base shear, kips (kN)

2000

2000

(8896)

(8896)

0

0

(8896)

(8896)

-2000

-2000

-3

0

3

-3

0

3

roof drift, %

roof drift, %

F

akbe

F

F

akbe

[(1+br)Fbe,Dbe]

(brFbe,Dbe)

(Fbe,Dbe)

D

D

D

=

+

kbe

(1+bs)kbe

bskbe

Bilinear-Elastic/

Bilinear-Elastic (BE)

Elasto-Plastic (EP)

Elasto-Plastic (BP)


Partially post tensioned precast concrete walls

SAC GROUND MOTIONS

pseudo-acceleration, g

4

Los Ang., SD soil, survival-level

(SAC LA21-40)

AVG spectrum

2

5% damping

0

0.5

1

1.5

2

2.5

3

3.5

period, seconds


Sdof mdof peak displacement

SDOF/MDOF PEAK DISPLACEMENT

SDOF/MDOF maximum displacement ratio

1.2

1.0

mean

0.8

0.6

0.4

Wall HW1

SAC LA21- 40

0.2

0

50

100

(381) 150

maximum incremental velocity, in/sec (cm/sec)


Ductility demand

DUCTILITY DEMAND

F

F

F

akbe

akbe

[(1+br)Fbe,Dbe]

(brFbe,Dbe)

(Fbe,Dbe)

D

D

D

+

=

kbe

(1+bs)kbe

bskbe

Bilinear-Elastic/

Bilinear-Elastic (BE)

Elasto-Plastic (EP)

Elasto-Plastic (BP)

  • bs = br = 1/4, 1/3, 1/2

  • a = 0.02, 0.10

  • Moderate and High Seismicity

  • Design-Level and Survival-Level

  • Stiff Soil and Medium Soil Profiles

R=[c(m-1)+1]1/c

Tab

c= +

Ta+1 T

(Nassar & Krawinkler, 1991)

(Farrow and Kurama, 2001)


Partially post tensioned precast concrete walls

DUCTILITY DEMAND SPECTRA (Farrow and Kurama, 2001)

br = bs = 1/3, a=0.10, High Seismicity, Stiff (Sd) Soil, R=1, 2, 4, 6, 8 (thin thick)

Design EQ (SAC): a=3.83, b=0.87

Survival EQ (SAC): a=1.08, b=0.89

ductility demand, m

ductility demand, m

14

14

BP, mean

regression

0

0

3.5

3.5

period, seconds

period, seconds

Survival EQ (SAC): BP versus EP

Survival EQ (SAC): BP versus BE

ductility demand, m

ductility demand, m

14

14

BP, mean

EP, mean

BE, mean

0

0

3.5

3.5

period, seconds

period, seconds


Nonlinear demand spectra

NONLINEAR DEMAND SPECTRA

demand acceleration, g

demand acceleration, g

1.5

1.5

T = 0.5 sec.

T = 1.5 sec.

m=1

m=1

a = -0.71

a = -0.71

b = 0.94

b = 0.94

1

1

(linear-elastic)

(linear-elastic)

2

a = 2.3

2

1.5

1.5

T = 0.5 sec.

T = 1.5 sec.

m

=

1

m

=

1

a = 2.3

demand

b = 1.3

b = 1.3

spectrum

1

1

2

2

a

a

S (g)

S (g)

B

4

D

4

0.5

0.5

C

8

8

E

F

capacity curve

4

0

0

20

40

60

80

100

20

40

60

80

100

S (cm)

S (cm)

d

d

(a)

1.5

1.5

T = 0.5 sec.

T = 1.5 sec.

m

=

1

m

=

1

0.5

a = -0.71

a = -0.71

0.5

b = 0.94

b = 0.94

1

1

A

4

2

2

a

a

S (g)

S (g)

B

4

D

0.5

0.5

4

C

8

8

E

F

0

0

20

40

60

80

100

20

40

60

80

100

S (cm)

S (cm)

d

d

8

(b)

8

0

0

(39) 100

(39) 100

demand displacement, cm (in.)

demand displacement, cm (in.)


Design objectives survival level

DESIGN OBJECTIVES – SURVIVAL LEVEL

base

shear

immediate

occupancy

(Dt=1.19%)

collapse

prevention

(Dt=2.17%)

WALL WH1

WALL WH2

roof drift


Walls hw1 and hw2

WALLS HW1 AND HW2

No. 10 bars

No. 5 bars

C

L

8 pairs

7 pairs

@ 2.5 in.

@ 18 in.

(@ 63 mm)

(@ 457 mm)

12in.

(305mm)

11 ft (3.35 m)

Wall WH1

No. 10 bars

No. 5 bars

C

L

7 pairs

6 pairs

@ 2.5 in.

@ 18 in.

(@ 63 mm)

(@ 457 mm)

12in.

(305mm)

10 ft (3 m)

Wall WH2


Wall hw1

WALL HW1

maximum roof drift, %

3

2

Dt=1.19%

1

Dmean=1.13%

0

50

100

(381) 150

maximum incremental velocity, in/sec (cm/sec)


Wall wh2

WALL WH2

maximum roof drift, %

3.5

3

2.5

Dt=2.17%

2

Dmean=1.85%

1.5

1

0.5

0

50

100

(381) 150

maximum incremental velocity, in/sec (cm/sec)


Conclusions

CONCLUSIONS

  • Energy Dissipation

  • Mild steel reinforcement yielding in tension and compression

  • Design Approach

  • MDOF SDOF Nonlinear demand spectra

  • Target drift

  • Seismic Response Evaluation

  • Maximum drift reduced below target drift

  • Significant scatter in results


National science foundation career program cms 98 74872 program directors dr s c liu dr s macabe

National Science Foundation CAREER-Program CMS 98-74872Program DirectorsDr. S. C. LiuDr. S. MaCabe


  • Login