1 / 152

พันธะเคมี ( Chemical bond)

พันธะเคมี ( Chemical bond). สารต่างๆ ในธรรมชาติอาจอยู่เป็นโมเลกุลหรือผลึก เกิดจาก อะตอม 2 อะตอมขึ้น ไป นำแว เลนซ์อิเล็กตรอนมา สร้างพันธะเคมีร่วมกันจึงเกิดเป็นแรงยึดเหนี่ยว ซึ่งกันและกันทำให้สารมีความเสถียร มากขึ้น. H 2. H 2 O. NH 3. CH 4. เนื้อหาเรื่องพันธะเคมี. พันธะเคมีชนิดต่าง ๆ

clio
Download Presentation

พันธะเคมี ( Chemical bond)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. พันธะเคมี (Chemical bond)

  2. สารต่างๆ ในธรรมชาติอาจอยู่เป็นโมเลกุลหรือผลึก เกิดจาก อะตอม 2 อะตอมขึ้นไป นำแวเลนซ์อิเล็กตรอนมา สร้างพันธะเคมีร่วมกันจึงเกิดเป็นแรงยึดเหนี่ยว ซึ่งกันและกันทำให้สารมีความเสถียร มากขึ้น H2 H2O NH3 CH4

  3. เนื้อหาเรื่องพันธะเคมีเนื้อหาเรื่องพันธะเคมี • พันธะเคมีชนิดต่าง ๆ • ปริมาณที่เกี่ยวข้องกับพันธะและโครงสร้าง • พลังงานของพันธะเคมีและความร้อนของการเกิดปฏิกิริยา • ความยาวพันธะมุมพันธะ • สภาพขั้วของพันธะ • ทฤษฎีที่ใช้อธิบายพันธะโควาเลนต์ • โครงสร้างของลิวอิส (Lewis Structure) และทฤษฎี VSEPR • ทฤษฎีที่ใช้ในการอธิบายพันธะโลหะ • แรงระหว่างพันธะ

  4. แรงยึดเหนี่ยวระหว่างอนุภาคของสารเพื่อให้อะตอมรวมกันเป็นโมเลกุลหรือให้โมเลกุลรวมกันเป็นกลุ่มก้อนแรงยึดเหนี่ยวระหว่างอนุภาคของสารเพื่อให้อะตอมรวมกันเป็นโมเลกุลหรือให้โมเลกุลรวมกันเป็นกลุ่มก้อน นิยามพันธะเคมี โมเลกุล-โมเลกุล อะตอม-อะตอม ไอออน-ไอออน

  5. แรงยึดเหนี่ยวระหว่างโมเลกุลแบ่งออกเป็น 2 ประเภท 1. แรงยึดเหนี่ยวระหว่างอะตอมหรือไอออนของธาตุ 1.1 พันธะไอออนิก 1.2 พันธะโคเวเลนต์ 1.3 พันธะโลหะ 2. แรงยึดเหนี่ยวระหว่างโมเลกุล 2.1 แรงแวนเดอร์วาลส์ ได้แก่ แรงลอนดอน แรงดึงดูดระหว่างขั้ว 2.2 พันธะไฮโดรเจน

  6. พันธะโคเวเลนต์ Covalent Bond

  7. การเปลี่ยนแปลงพลังงานในการเกิดโมเลกุลไฮโดรเจนการเปลี่ยนแปลงพลังงานในการเกิดโมเลกุลไฮโดรเจน นักเรียนคิดว่าไฮโดรเจน 2 อะตอมรวมตัวเป็นโมเลกุล จะเปลี่ยนแปลงพลังงานอย่างไร? พลังงานศักย์ (kJ/mol) H H H H 436 kJ/mol ระยะระหว่างอะตอมของไฮโดรเจน (pm) 74 pm

  8. นิยาม พันธะโคเวเลนต์ ( Covalent bond ) หมายถึง พันธะที่เกิดจากอะตอมคู่หนึ่งใช้อิเล็กตรอนร่วมกัน โดยเกิดแรงดึงดูดระหว่างอิเล็กตรอนกับโปรตอนในนิวเคลียสของอะตอมทั้งสอง IE สูง กับ IE สูง หรือ อโลหะ กับ อโลหะ

  9. ชนิดของพันธะโคเวเลนต์ชนิดของพันธะโคเวเลนต์ I I I I I 1 อะตอม I2โมเลกุล I 1 อะตอม O O O O O 1 อะตอม O2โมเลกุล O 1 อะตอม N N N N N 1 อะตอม N2โมเลกุล N 1 อะตอม

  10. I I I2โมเลกุล O O O2โมเลกุล N N N2โมเลกุล I I พันธะเดี่ยว eคู่ร่วมพันธะ 1 คู่ (Single bond) O O พันธะคู่ eคู่ร่วมพันธะ 2 คู่ (Double bond) N N พันธะสาม (Triple bond) eคู่ร่วมพันธะ 3 คู่

  11. พันธะโคออร์ดิเนตโคเวเลนต์พันธะโคออร์ดิเนตโคเวเลนต์ (Coordinate Covalent bond หรือ Dative Covalent bond) นิยาม พันธะที่เกิดขึ้นโดยอิเล็กตรอนคู่ร่วมพันธะมาจากอะตอมของธาตุเดียว ส่วนอีกธาตุหนึ่งไม่ได้ส่งอิเล็กตรอนมาร่วมพันธะแต่มาใช้อิเล็กตรอนคู่โดดเดี่ยวของธาตุอื่น เพื่อให้จำนวนเวเลนต์อิเล็กตรอนครบ 8 ตามกฎออกเตต

  12. O O O O พันธะโคออร์ดิเนตโคเวเลนต์ (Coordinate Covalent bond หรือ Dative Covalent bond) พันธะโคออร์ดิเนตโคเวเลนต์ พันธะโคเวเลนต์ O O O O O O3

  13. การเขียนสูตรแบบเส้นและแบบจุดการเขียนสูตรแบบเส้นและแบบจุด 1. หาอะตอมกลาง 2. วางตำแหน่งของอะตอมของธาตุทั้งหมด 3. เขียนสูตรแบบเส้นและแบบจุด ตามลำดับ

  14. โครงสร้างแบบจุดอิเล็กตรอนโครงสร้างแบบจุดอิเล็กตรอน • การเขียนโครงสร้างลิวอิสหรือโครงสร้างแบบจุดอิเล็กตรอน (Lewis’s dot structure) เป็นวิธีการเขียนเพื่อแสดงวาเลนซ์อิเล็กตรอนและ การสร้างพันธะโควาเลนต์ระหว่างอะตอมในโมเลกุล โครงสร้างลิวอิสของอะตอม • ใช้จุดแทนวาเลนซ์อิเล็กตรอน

  15. กฎออกเตด(Octet Rule) • กฎออกเตดอะตอมที่มีวาเลนซ์อิเล็กตรอนครบแปด* (มีการจัดเรียงอิเล็กตรอนเหมือนแก๊สเฉื่อยในหมู่8A)จะมีความเสถียรมาก โดยไม่สำคัญว่าอิเล็กตรอนดังกล่าวจะเป็นของอะตอมเองหรือได้มาจากการใช้อิเล็กตรอนร่วมกับอะตอมอื่น(พันธะโควาเลนต์) • ใช้ได้ดีกับธาตุใน s และ p block • ใช้ได้ดีกับสารประกอบอินทรีย์ • มีข้อยกเว้นมาก โดยเฉพาะกับอะตอม Be B และ Al • ตามกฎออกเตด H และ Heจะมีวาเลนซ์ • อิเล็กตรอนครบสอง valence e 8 valence e= 8 Noble Gas (8A)

  16. Cl Be Cl โมเลกุลที่ไม่เป็นไปตามกฎออกเตต 1. อะตอมของธาตุในโมเลกุลที่มีเวเลนต์อิเล็กตรอนน้อยกว่า 8 ได้แก่ สารประกอบธาตุคู่ของ Be B และ Al เช่น BeCl2 AlF3 F Al F F

  17. F F F P F F Cl Cl Cl S Cl Cl Cl 2. อะตอมของธาตุในโมเลกุลที่มีเวเลนต์อิเล็กตรอนมากกว่า 8 ได้แก่ สารประกอบธาตุคู่ที่มีอะตอมกลางของธาตุตั้งแต่หมู่ 4 ขึ้นไป เช่น PF5 SCl6

  18. O N O O Cl O 3. ออกไซด์ของธาตุบางชนิด เช่น NO2 ClO2

  19. F F S F F ข้อยกเว้นของกฎออกเตด 1. โมเลกุลที่มีอิเล็กตรอนเป็นเลขคี่ เช่น • ClO2 มีอิเล็กตรอนรวม เท่ากับ 19 • NO มีอิเล็กตรอนรวม เท่ากับ 11 • NO2มีอิเล็กตรอนรวม เท่ากับ 17 2. โมเลกุลที่อะตอมกลางมีอิเล็กตรอนน้อยกว่า 8 • BF3B มีอิเล็กตรอนเท่ากับ 6 • BeH2 Be มีอิเล็กตรอนเท่ากับ 6 3.โมเลกุลที่อะตอมกลางมีอิเล็กตรอนมากกว่า 8 • PCl5มีอิเล็กตรอน เท่ากับ 10 • XeF4มีอิเล็กตรอน เท่ากับ 12 • SF4 มีอิเล็กตรอน เท่ากับ 10

  20. H H C H H H HCH H NN N N โครงสร้างลิวอิสของโมเลกุล • โครงสร้างลิวอิสของโมเลกุล • พันธะโควาเลนต์คือการใช้อิเล็กตรอนร่วมกันของสองอะตอม • หนึ่งพันธะประกอบด้วยสองอิเล็กตรอน (2 shared electrons) • แต่ละพันธะแทนด้วยจุด 2 จุด (:) หรือ หนึ่งเส้น () • อิเล็กตรอนที่ใช้ในการสร้างพันธะ เรียกว่า bonding electron • อิเล็กตรอนที่ไม่เกี่ยวข้องกับการสร้างพันธะเรียกว่า non-bonding electron

  21. การเขียนโครงสร้างลิวอิสการเขียนโครงสร้างลิวอิส • กำหนดอะตอมกลาง(ต้องการ valence electron หลายตัว) และการจัดเรียงอะตอมในโมเลกุล • นับจำนวนเวเลนซ์อิเล็กตรอนของทุกอะตอมในโมเลกุล • ไอออนลบ: เพิ่มจำนวนอิเล็กตรอนเท่ากับจำนวนประจุลบของไอออน • ไอออนบวก: ลบจำนวนอิเล็กตรอนเท่ากับจำนวนประจุบวกของไอออน • เชื่อมอะตอมด้วยพันธะเดี่ยว(ระหว่างอะตอมกลางกับอะตอมปลาย) โดยใช้ 2 อิเล็กตรอนในการสร้างพันธะเดี่ยวแต่ละพันธะ • เติมวาเลนซ์อิเล็กตรอนให้กับอะตอมปลายให้ครบ8 (ยกเว้น H เท่ากับ 2) • เติมอิเล็กตรอนที่เหลือให้กับอะตอมกลาง (อาจมากกว่า 8) • ถ้าจำนวนวาเลนซ์อิเล็กตรอนที่อะตอมกลางไม่ครบ 8 ให้นำอิเล็กตรอนที่ไม่ร่วมพันธะของอะตอมรอบๆ มาสร้างพันธะคู่หรือพันธะสาม • จำนวนวาเลนซ์อิเล็กตรอนรวมต้องเท่ากับที่ได้จากข้อ 1.

  22. หรือ F N F F F N F F F N F F F N F F F N F F F N F F หรือ หรือ ตัวอย่างโครงสร้างลิวอิสของ NF3 1. อะตอมกลางคือ N 2. จำนวนเวเลนซ์อิเล็กตรอน = 5 + (7x3) = 26 อิเล็กตรอน(จำนวนเวเลนซ์อิเล็กตรอนของ N= 5 F = 7) 3. เขียนพันธะเดี่ยวระหว่างอะตอมกลางกับอะตอมปลาย 4. เขียนอิเล็กตรอนของอะตอมปลายให้ครบ 8 5. เติมอิเล็กตรอนที่เหลือให้กับอะตอมกลาง (26-24 = 2 อิเล็กตรอน)

  23. H C N H C N H C N H C N HCN ตัวอย่าง โครงสร้างลิวอิสของ HCN • อะตอมกลางคือ C • จำนวนเวเลนซ์อิเล็กตรอนของ HCN 1 + 4 + 5 =10 อิเล็กตรอน • เขียนพันธะเดี่ยวระหว่างอะตอมกลางกับอะตอมที่มีพันธะ • เขียนอิเล็กตรอนของอะตอมปลาย ให้ครบ 8 (หรือ 2) • เติมอิเล็กตรอนที่เหลือให้กับอะตอมกลาง (10-10 = 0)ยังไม่เป็นไปตามกฎออกเตต • นำอิเล็กตรอนที่ไม่ร่วมพันธะของอะตอมรอบๆ (N) มาสร้างพันธะคู่หรือพันธะสาม จนอะตอมกลางมีอิเล็กตรอนครบแปด

  24. ประจุฟอร์มอล : มักใช้กับการพิจารณาสารโคเวเลนต์ซึ่งถือว่าพันธะที่ยึดอะตอมเข้าด้วยกันเป็นผลจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน แม้ว่าบางกรณีสารโคเวเลนต์นั้นจะมีประจุรวมเป็นศูนย์ แต่เมื่อพิจารณาเป็นอะตอม อะตอมแต่ละตัวอาจมีประจุเป็นศูนย์ ในขณะที่บางอะตอมเสมือนว่ามีอิเล็กตรอนเกินมา ก็จะมีประจุเป็นลบ และขณะที่บางอะตอมอาจเสมือนว่าเสียอิเล็กตรอนไป ก็จะมีประจุเป็นบวก ซึ่งเรียกประจุเหล่านี้ว่า ประจุฟอร์มอล (formal charge)

  25. ประจุฟอร์มอล (Formal charge) ประจุฟอร์มอล เป็นค่าความแตกต่างระหว่างจำนวนเวเลนซ์อิเล็กตรอนของอะตอมแต่ละอะตอม กับจำนวนอิเล็กตรอนที่อะตอมมีอยู่ในสูตรโครงสร้างลิวอิส เป็นการทำนายการสภาพขั้วของโมเลกุลอย่างคร่าว ๆ การคำนวณประจุฟอร์มอลของอะตอม • V จำนวนเวเลนซ์อิเล็กตรอนของอะตอมที่พิจารณา • Nจำนวนของอิเล็กตรอนที่ไม่ได้สร้างพันธะของอะตอมที่พิจารณา • B จำนวนอิเล็กตรอนที่สร้างพันธะรอบๆ อะตอมที่พิจารณา

  26. การพิจารณาประจุฟอร์มอล และโครงสร้างลิวอิส สำหรับโมเลกุลที่เป็นกลาง โครงสร้างลิวอิสที่ไม่มีประจุฟอร์มอล จะเป็นที่ยอมรับมากกว่าโครงสร้างที่มีประจุฟอร์มอล โครงสร้างลิวอิสที่มีค่าประจุฟอร์มอลสูง เช่น +2 +3 หรือ -2 -3 ขึ้นไป จะมีความเป็นไปได้น้อยกว่าแบบที่มีประจุฟอร์มอลต่ำ ในโครงสร้างที่มีประจุฟอร์มอลเท่ากัน โครงสร้างที่แสดงค่าของ ประจุฟอร์มอลลบอยู่ที่ตำแหน่งอะตอมที่มีค่า EN สูง จะเป็นโครงสร้าง ที่ถูกต้องมากกว่า

  27. H H O HNCC H H O OIO O +2 1 1 OIO O 1 + - ตัวอย่าง จงหาประจุฟอร์มอลของแต่ละอะตอม • [IO3]– • I = 7 – 2 – ½ (6) = +2 • O = 6 – 6 – ½ (2) = -1 ประจุรวม = +2 – 1 – 1 – 1= -1 • [NH3CH2COO]– วิธีลัด ดูจำนวนพันธะเปรียบเทียบกับจำนวนพันธะที่ควรจะมีของแต่ละอะตอม เช่น N มีวาเลนซ์ 5 ควรมีพันธะ 3 พันธะ ถ้ามีเกินจะเป็นบวก ถ้ามีไม่ครบจะเป็นลบ

  28. .. .. .. .. .. .. .. .. O O O O O O .. .. .. .. - คำนวณประจุฟอร์มอลของ O3 0 +1 -1 O = 6 – 4 – ½(4) = 0 O = 6 – 2 – ½(6) = +1 O = 6 – 6 – ½(2) = -1

  29. N N N N N N N N N โครงสร้าง Lewis ที่เป็นไปได้ หลักในการตัดสินว่าโครงสร้างเรโซแนนซ์แบบใด ควรเป็นไปได้มากที่สุดมี หลักการพิจารณาว่าโครงสร้างใดเป็นโครงสร้างที่เป็นไปได้ มากที่สุด มีดังนี้ 1. เป็นไปตามกฎออกเตดมากที่สุด 2. โครงสร้างที่มีประจุฟอร์มอลต่ำที่สุด 3. อะตอมที่มีค่า EN สูงควรมีประจุฟอร์มอลเป็นลบ 4. อะตอมชนิดเดียวกันไม่ควรมีประจุฟอร์มอลตรงข้ามกัน OCO O=C=OOCO CO2 +1 0 -1 0 0 0 -1 0 +1 N3 -2 +1 0 -1 +1 -1 0 +1 -2

  30. .. .. .. .. O O S S O O .. .. เรโซแนนซ์ (Resonance) : หมายถึง โมเลกุลหรือไอออนบางชนิด เราไม่สามารถเขียนสูตรโครงสร้างเพียงหนึ่งสูตรได้ เพื่อให้มีสมบัติต่างๆ ตรงกับข้อมูลที่ได้จากการทดลอง ซึ่งมีการใช้โครงสร้างลิวอิสตั้งแต่ 2 โครงสร้างขึ้นไปแทน โมเลกุลใดโมเลกุลหนึ่ง ข้อควรระวังคือ การจะเป็นโครงสร้างเรโซแนนซ์ได้สารต้องมีการจัดเรียงตัวของอะตอมเหมือนกัน ต่างเพียงการกระจายอิเล็กตรอนในพันธะเท่านั้น เช่น SO2

  31. +1 +1 S O O S O O -1 -1 เรโซแนนซ์(Resonance) ในบางโมเลกุลหรือไอออน สามารถเขียนแบบจำลองของลิวอิสได้มากกว่า 1 แบบ เช่น CO2 และ SO2 เรียกปรากฏการณ์นี้ว่าปรากฏการณ์เรโซแนนซ์โดยต้องมีการจัดเรียงลำดับของอะตอมเหมือนกันเสมอ ต่างกันแต่เพียงการกระจายอิเล็กตรอนในพันธะ +1 -1 +1 -1 OCO O=C=OOCO

  32. +1 +1 O O O O O O -1 -1 O O O 1.278 Å 1.278 Å เรโซแนนซ์ (Resonance) โครงสร้างลิวอิสของ O3จากการทดลองพบว่า ความยาวพันธะระหว่าง O ทั้งสองเท่ากันแสดงว่าโมเลกุล O3 ไม่เกิดพันธะทั้ง 2 แบบ แต่เกิดโครงสร้างที่เรียกว่า โครงสร้างเรโซแนนซ์(Resonance structure)

  33. การเขียนสูตรโมเลกุลของสารประกอบโคเวเลนต์การเขียนสูตรโมเลกุลของสารประกอบโคเวเลนต์ 1. เขียนสัญลักษณ์ของธาตุเรียงตามลำดับดังนี้ B Si C Sb As P N H Te Se S At I Br Cl O F 2. ระบุจำนวนอะตอมของธาตุในสารประกอบ โดยเขียนตัวเลขไว้มุมล่างขวา 3. ใช้จำนวนอิเล็กตรอนที่แต่ละอะตอมต้องการคูณไขว้กัน และทำให้เป็นอัตราส่วนอย่างต่ำ เช่น CS C2S4CS2 4 2

  34. ตัวอย่างสูตรสารประกอบโคเวเลนต์ตัวอย่างสูตรสารประกอบโคเวเลนต์ NCl3 CO2 NH3 C2H4 HF CH4 H2S PH3 Cl2O CCl4PCl3 H2O

  35. การเรียกชื่อสารประกอบโคเวเลนต์การเรียกชื่อสารประกอบโคเวเลนต์ 1. สารประกอบธาตุคู่ ให้อ่านธาตุตัวหน้าก่อนและตามด้วยธาตุตัวหลังโดยเปลี่ยนท้ายพยางค์เป็นไอด์ (-ide) 2. ระบุจำนวนอะตอมของแต่ละธาตุด้วยจำนวนในภาษากรีก ดังนี้ mono- (1), di-(2), tri-(3), tetra-(4), penta-(5), hexa-(6), hepta-(7), octa-(8), nona-(9), deca-(10) 3. ถ้าธาตุตัวหน้ามีอะตอมเดียวไม่ต้องระบุจำนวนอะตอม แต่ธาตุตัวหลังต้องระบุจำนวนอะตอมแม้มีเพียงอะตอมเดียว

  36. ตัวอย่างการเรียกชื่อสารประกอบโคเวเลนต์ตัวอย่างการเรียกชื่อสารประกอบโคเวเลนต์ AsF5 อ่านว่า อาร์ซีนิกเพนตะฟลูออไรด์ AlI3อ่านว่า N2Oอ่านว่า Cl2O7อ่านว่า COอ่านว่า อะลูมิเนียมไตรไอโอไดด์ ไดไนโตรเจนโมโนออกไซด์ ไดคลอรีนเฮปตะออกไซด์ คาร์บอนโมโนออกไซด์

  37. พลังงานพันธะ

  38. ความยาวพันธะ หมายถึง ระยะทางระหว่างนิวเคลียสของอะตอมสองอะตอมที่สร้างพันธะกันในโมเลกุล อะตอมแต่ละชนิดอาจเกิดพันธะมากกว่า 1 ชนิด เช่น C กับ C , N กับ N และพันธะแต่ละชนิดจะมีพลังงานพันธะและความยาวพันธะแตกต่างกัน พันธะเดี่ยว > พันธะคู่ > พันธะสาม

  39. พลังงานพันธะ หมายถึง พลังงานที่ใช้ไปเพื่อสลายพันธะระหว่างอะตอมภายในโมเลกุลซึ่งอยู่ในสถานะแก๊สให้แยกออกเป็นอะตอมในสถานะแก๊ส พลังงานพันธะใช้บอกความแข็งแรงของพันธะ พันธะสาม > พันธะคู่ > พันธะเดี่ยว

  40. CH4 (g) + 423 kJ CH3(g) + H (g) CH3 (g) + 368 kJ CH2(g) + H (g) CH2 (g) + 519 kJ CH (g) + H (g) CH (g) + 335 kJ C (g) + H (g) การสลายพันธะชนิดเดียวกันในโมเลกุลที่มีหลายพันธะ ต้องมีการสลายพันธะหลายขั้นตอน แต่ละขั้นตอนใช้พลังงานไม่เท่ากัน ดังนั้นพลังงานพันธะจึงใช้ค่าเฉลี่ยแทน เรียกว่า พลังงานพันธะเฉลี่ย

  41. พลังงานพันธะเฉลี่ย (Average Bond Energy) พลังงานพันธะเฉลี่ย เป็นค่าเฉลี่ยของพลังงานสลายพันธะสำหรับพันธะแต่ละชนิดในโมเลกุลต่าง ๆ (เป็นค่าโดยประมาณ)

  42. พลังงานพันธะรวมของสารตั้งต้นพลังงานพันธะรวมของสารตั้งต้น พลังงานพันธะรวมของผลิตภัณฑ์ ความร้อนของปฏิกิริยา (Heat of Reaction) การเกิดปฏิกิริยาเคมี คือกระบวนการที่มีการทำลายพันธะเดิม(สารตั้งต้น) และสร้างพันธะใหม่(สารผลิตภัณฑ์) ความร้อนของปฏิกิริยา (Hrxn) คือพลังงานเอนทาลปีของระบบที่เปลี่ยนแปลงไปในรูปความร้อนเมื่อเกิดปฏิกิริยา สามารถหาได้จาก • Hrxnเป็นลบ ปฏิกิริยาคายพลังงาน • Hrxnเป็นบวก ต้องใช้พลังงานเพื่อให้เกิดปฏิกิริยา (ปฏิกิริยาดูดพลังงาน)

  43. การคำนวณหาค่าความร้อนของปฏิกิริยาการคำนวณหาค่าความร้อนของปฏิกิริยา ตัวอย่างจงหาพลังงานที่เปลี่ยนแปลงของปฏิกิริยาต่อไปนี้ CH4(g) + Cl2(g)  CH3Cl(g) + HCl(g) • (พลังงานพันธะสารตั้งต้น)= 4D(C-H) + D(Cl-Cl) • (พลังงานพันธะผลิตภัณฑ์ )= D(C-Cl) + 3D(C-H) + D(Cl-H) • Hrxn= 4D(C-H) + D(Cl-Cl)–[D(C-Cl) + 3D(C-H) + D(Cl-H)] = (4414 + 243) –(339 + 3414 + 431) kJ/mol=–113 kJ/mol ปฏิกิริยานี้จะคายความร้อนออกมา 113 kJ/mol

  44. การคำนวณ ตัวอย่างที่ 1 กำหนดพลังงานให้ดังนี้ H – H = 436 kJ/mol N N = 945 kJ/mol และ N – H = 391kJ/mol ปฏิกิริยาเคมีต่อไปนี้ดูดหรือคายพลังงานเท่าใด 2NH3(g) N2 (g) + 3H2 (g)

  45. 2NH3(g) N2 (g) + 3H2 (g) 2H – N – H N N + 3(H – H) 6(N – H) N N + 3(H – H) 6 x 391 945 + 3 x 436 2346 kJ 2253 kJ H ปฏิกิริยาดูดพลังงาน = 2346 – 2253 = 93 kJ

  46. รูปร่างโมเลกุล ทำไมต้องศึกษารูปร่างโมเลกุล เพราะสารต่างๆ แม้ว่าจะมีสูตรโมเลกุลเหมือนกันหรือไม่ก็ตามถ้ามีรูปร่างโมเลกุลต่างกัน สมบัติของสารก็แตกต่างกันด้วย รูปร่างของโมเลกุล (รูปทรงทางเรขาคณิต) เกิดจากการจัดตัวของอะตอมภายในโมเลกุลมีผลต่อคุณสมบัติทางกายภาพ (m.p., b.p., density) และทางเคมี

  47. H O H H H C C C C H H H H H H O H H ตัวอย่างเช่น เอทานอล และ เมทอกซีมีเทน CH3OCH3 CH3CH2OH สมบัติ : ของเหลวไม่มีสี ละลายน้ำได้ดี mp.-117 0C bp. 78.5 0C สมบัติ : แก๊ส ไม่มีสี ไม่ละลายน้ำmp. -138.5 0C bp. -23 0C

  48. จำนวนอะตอมในโมเลกุล จำนวนอิเล็กตรอนคู่ร่วมพันธะ จำนวนอิเล็กตรอนคู่โดดเดี่ยว มุมระหว่างพันธะและความยาวพันธะ ปัจจัยที่มีผลต่อรูปร่างโมเลกุล

More Related