1 / 23

ERDF Project: A ccelerating a L ow C arbon E conomy

ERDF Project: A ccelerating a L ow C arbon E conomy. Colin Snape. ALCE builds upon the University of Nottingham’s Energy Technologies Research Institute (ETRI). Major international centre for energy RD&D across a range of themes £50M current portfolio > tripled in 3 years.

clint
Download Presentation

ERDF Project: A ccelerating a L ow C arbon E conomy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ERDF Project:Accelerating a Low Carbon Economy Colin Snape

  2. ALCE builds upon the University of Nottingham’s Energy Technologies Research Institute (ETRI) Major international centre for energy RD&D across a range of themes £50M current portfolio > tripled in 3 years University of Nottingham Innovation Park

  3. Energy Technologies Research Institute (ETRI) 60 researchers as PIs or Co-Is on current grants 3 Faculties, over 13 disciplines Engineering: electrical, mechanical, chemical, civil, buildings Science: chemistry, biosciences, physics, maths, computing Social science: geography, economics, business David Wilson Millennium Eco-House

  4. ETRI R&D Themes Cleaner fossil energy Renewable energy generation and storage Flexible electrical systems Bio-fuels Hydrogen storage Low energy buildings Environment and social management ASGARD facility: underground CO2 release

  5. Midlands Energy Consortium (MEC) Partnership Nottingham, Birmingham, Loughborough, Wide collaboration on energy research and teaching Unrivalled concentration of energy related RD&D within the UK Hosts Energy Technologies Institute (ETI) Midlands Energy Graduate School (MEGS) training next generation of highly skilled personnel for energy industry and academia MEC - Aachen University MoU signing

  6. Pre and post-combustion capture application. One of best performing materials in independent worldwide study ADA-ES (US-DOE DE-NT0005649) Novel regeneration techniques and mechanisms published Leading large R&D activity to develop and scale-up technology Novel Adsorbents for CO2Capture (ii) (iii) (v) (iv) (i) Drage T.C. Blackman J.M. Pevida C. and Snape C.E. 2009. Energy & Fuels, 23, 2790–2796. (ii) Drage T.C., Arenillas A., Smith K.M. And Snape C.E. Micropor. & Mesopor. Mats. 2008, 116, 504-512. (iii) Drage T.C., Pevida C. and Snape C.E. Carbon, 2008, 46, 1464-1474. (iv) Drage T.C., Arenillas A., Smith K.M., Pevida C., Piippo S. and Snape C.E., 2007. Fuel 86, 22-31. (v) Arenillas A., Drage T.C., Smith K. and Snape C.E., 2005. J. Anal. and Appl. Pyrolysis, 74, 298-306.

  7. Cleaner fossil energy and CO2 capture Programme encompasses whole spectrum of cleaner coal and CO2 capture technologies, oil, biomass conversion and pollutant control and involves 10 academics. EPSRC - E.ON awards covering adsorbents, oxyfuel combustion and CO2 transport (Snape and Drage, £2M). China links – EPSRC collaborative projects and ICUK commercialisation award on adsorbents (£1.7M) Maroto-Valer - £1M EPSRC Challenging Engineering Award. Engineering Doctoral Centre (£9M), EPSRC - over 10 industrial partners producing 60 PhDs.

  8. Integrated Compressed Air Renewable Energy Systems Ultra-large direct-compression wind turbines have much lower costs per kW(e) output than conventional direct-gen. machines Energy can then be stored directly at very low costs (<£10K/MWh) Marginal energy loss of energy through storage <15%. Garvey, S.D. ‘Structural Capacity and the 20MW Wind Turbine’. IMechE Part A: Journal of Power and Energy, Dec 2009. Accepted subject to modifications. (Preprint http://www.box.net/shared/48817911dh)Pimm, A.J. and Garvey, S.D.. ‘Analysis of Flexible Structures for Large-Scale Subsea Compressed Air Energy Storage’. 7th Int. Conf. on Modern Practice in Stress and Vibration Analysis.  (IoP). Cambridge Sept 7-9 2009. http://www.iop.org/EJ/article/1742-6596/181/1/012049/jpconf9_181_012049.pdf?request-id=ef0dfb98-a730-43ae-afe3-924573568998 8 Patents filed and several other papers

  9. Highlight: UNIFLEX Major EU project led by Nottingham to research a cellular electrical power flow controller Paradigm shift in network control Instantaneous power control Asynchronous networks Flexible protection Reconfigurable Prototype (built at Nottingham) will be the control hub of the 0.5 MW Smart Grid research laboratory 8 journal papers from Nottingham are included in the Issue 4 Dec 2009 Journal of EPE “Special Issue on Power Electronics for the Future Energy Networks”

  10. Aim: Sustainable conversion of waste lignocellulosic biomass into ethanol Collaborations: Industrial - Bioethanol Ltd, Briggs, BP British Sugar, Coors Ltd, DSM, HGCA, Lallemand, Pusuit Dynamics, SABMiller, SWRI International: EBI (USA), JBEI (USA), Embrapa (Brazil), Tsinghua (China), VTT (Finland) Life Cycle Analysis (Bath, Nottingham) Farm Adapt (Nottingham) Digestion Screen Fungal Enzyme Discovery Novel Yeast Strains Chemical/Physical Disruption Fermentation Social and Ethical Dimensions Nottingham) Bioenergy: Lignocellulosic Conversion To Ethanol Patents and Publications: T.imasalena, S. Nicholls and K.A. Smart. (2009) Patent PCT/GB2009/050928, Yeast Strain Discrimination. 9 publications since 2007 covering gene transcription, petite mutants and oxidative stresses of yeast including: (i) B.R. Gibson, C.A. Boulton, W.G. Box, N.S. Graham, S.J. Lawrence, R.S.T. Linforth and K.A. Smart. Differential yeast gene transcription during brewery propagation. J. of the American Society of Brewing Chemists, 2010, doi:10.1094 /ASBCJ-2009-1123-01; (ii) B.R. Gibson, C.A. Boulton, W.G. Box, N.S. Graham, S.J. Lawrence, R.S.T. Linforth and K.A. Smart. Amino acid uptake and yeast gene transcription during industrial brewery fermentation. J. of the American Society of Brewing Chemists, 2009, 67(3), 157-165; (iii) C.L. Jenkins, S.J. Lawrence, A.I. Kennedy, P. Thurston, J.A. Hodgson and K.A. Smart. Incidence and formation of petite mutants in lager brewing yeast Saccharomyces cerevisiae (syn S. pastorianus) populations. J. of the American Society of Brewing Chemists, 2009, 67(2), 72-80.

  11. Design and synthesis of MOFs and nanoporous carbons with controlled pore architecture. High surface areas >3000 m2g-1. High hydrogen capacities (10 wt.% @ 20 bar, 77K). Fast kinetics and excellent cyclability. Neutron expts to probe H2 interactions. Collaborations: GM, EU, USA. £3 M research funding. Nanoporous Hydrogen Storage MaterialsSchroder, Chem; Walker, Eng. MOF cage architecture (Schroder, Chem) H2 sorption sites (Walker, Eng.) X Lin, I Telepeni, A J Blake, et al.,J. Am. Chem. Soc., 131 (2009) 2159. X Lin, J Jia, X Zhao, et al.,Angewandte Chem. International Edition, 45 (2006) 7358. Y Xia, G S Walker, D M Grant, R Mokaya, J. Am. Chem. Soc., 131 (2009) 16493). Nanoporous carbons (Walker, Eng; Mokaya, Chem)

  12. Ventilation/Air Quality • Mop Fan Technology • A flexible mop fan for removing particles and gases pollutants • A photocatalyst, titanium dioxide, is immobilised on the fibres (polymers/optics) • The mop is bathed in ultraviolet light by a UV lamp • BIRNIE, M., GILLOTT, M. and RIFFAT.S., 2006. The immobilization of titanium dioxide on organic polymers, for a cost effective and energy efficient means of improving indoor air quality. International Journal of Green Energy, 3(1), 101-114. • PATENT: A Photocatalytic Mop Fan for Air Cleaning, PCT/GB03/003599 & Euro Patent 00969685.7

  13. Environment and society Alleviating energy poverty, CHP stove Rural India – participation in renewable energy approaches India networks – addressing both technology and societal issues. SCORE stove generating heat and electricity

  14. Dedicated Buildings (> £20M investment) Energy RD&D, labs, knowledge exchange space Low carbon exemplar: BREEAM Outstanding 2100m2 on award winning Jubilee Campus Innovation Park c. £10M investment: £5M UoN £2.8M ERDF £1M Wolfson Energy Technologies Building Design for Energy Technologies Building (completion summer 2011)

  15. Dedicated Buildings Bioenergy Centre • Laboratory Scale Conversion Plant • Liquid and Solid State Fermentation Suites • Analytical Laboratories • Molecular and Microbiology Laboratories Housing: BBSRC Sustainable Bioenergy Centre Programme LACE Food and Biofuel Innovation Centre Brewing Research Facility Bioenergy Centre,Sutton Bonington Completion 2011

  16. China Centre for Sustainable Energy Technologies (Ningbo Campus) Collaborations: Chinese Academy of Sciences Tsinghua University Southeast University Shanghai Research Institute for Building Science Sichuan University Zhejiang University Chongqing University … CSET building, Ningbo campus, China

  17. ALCE: What will it do? Accelerate the low carbon economy in the region Showcase emerging low carbon technologies through unique R&D and demonstration facilities. Providing focused postgraduate training to improve the regional knowledge and skills base This will catalyze increased regional business innovation Pellets capturing CO2 using amine polymer

  18. Workpackage A: Outreach Information and networking events Annual conference Topic workshops Demonstration Coordinating with others’ events Referrals Light pipe in university’s Eco House

  19. B: New energy building BREEAM Outstanding Energy technologies e.g.: hydrogen refuelling station, electric vehicle charging, energy storage, H fuel cell, biomass CHP, pv… 700 m2 Labs, 600 m2 prototyping hall, 500 m2 offices (60 staff, 60 PGRs) and 300 m2 amenities Creative Energy Homes, University Park

  20. C: Enhancing energy RD&D capacity New RD&D facilities, e.g. super-capacitor and bio-refining UoN and business use Graduate placements (KTP, dissertations, sponsored PhDs, vacation) Graduate Placement Fund (salary and travel) 5 new PhDs Prototype supercapacitor

  21. D: smart energy community Smart networks RD&D Initially energy building + creative energy homes Expand after 2-3 years Industry: test devices in operating conditions Government: showcase capability First virtual energy community? UNIFLEX Controller

  22. Timescales months from April 2010: 1-4: appointments 4+ : smart grid RD&D 6 : Launch event 7+ : events, placements 8-21: energy building (Jan, 2012) 24+: energy community expansion MOF polymer for world-record H storage

  23. ContactMelanie WattsProject ManagerALCE@nottingham.ac.uk

More Related