2
This presentation is the property of its rightful owner.
Sponsored Links
1 / 110

第 2 章 数 据 加 密 PowerPoint PPT Presentation


  • 123 Views
  • Uploaded on
  • Presentation posted in: General

第 2 章 数 据 加 密. 2.1 数据加密概述 2.2 对称密码体制 2.3 非对称密码体制 2. 4 密钥的管理 2. 5 散列函数与数字签名 2. 6 本章小结. 通过本章的学习,读者应该掌握以下内容: ( 1 )了解数据加密在网络安全中的重要作用; ( 2 )掌握对称密码体制的 DES 和 AES 算法; ( 3 )掌握非对称密码体制的 RSA 和椭圆曲线加密算法; ( 4 )熟悉密钥的管理。. 2.1 数字加密概述.

Download Presentation

第 2 章 数 据 加 密

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


2

2

  • 2.1

  • 2.2

  • 2.3

  • 2.4

  • 2.5

  • 2.6


2

  • 1

  • 2DESAES

  • 3RSA

  • 4


2

2.1


2

S=PCKED

PCKEDkKEkDk

C=Ek(P)

P=Dk(C)=Dk(Ek(P)),

Dk=Ek1Ek=Dk1


2


2

2.1.1

2.1ABEAB


2

2.1


2

2.1.2

1Transposition

1Railroad Method

4

STRIKE WHILE THE IRON IS HOT4

S R K W I E H I O I H T

T I E H L T E R N S O E


2

  • SRKWIEHIOIHTTITIEHLTERNSOE

  • 4

  • SRKW IEHI OIHT TIRH LYRT NSOE


2

  • 4

  • SRKW IEHI OIHT TIRH LYRT NSOE


2

S

T

R

I

K

E

W

H

I

L

E

T

H

E

I

R

O

N

I

S

H

O

T

E

2

4

2.2


2

2.2

ETNETOEKILROHIIRTHESIHWS


2

2.2


2

3

PREDIC


2

CDEIPR

E T N E I L R O R I I HKE O TSWH I H T ES


2

2Substitution


2

1

2.3


2

2.3

2.4


2

2Lewis Carrolls Vigenere

2.12.12.12.1CRYPTOGRAPHYSTRIKEWHILETHEIRONISHOT


2

CRYPTOGRAPHYCRYPTOGRAPH

STRIKEWH IL ET HE IR ON IS HO T

2.1C,S2.1CSS

UKPXDSCYIAIRJVGGHBOTHDA


2

2.1.3

1


2

2

64bit


2

3

4


2

2.2

  • 2.2.1 DES

  • Data Encryption StandardDES2070IBM1977DESDES20DESDES


2

  • 1DES

  • DES64DES646464064


2

DESKEY64856DES

2.5DES16Round642.516K1K2K16K16K15K1


2

2.2


2

2.3


2

  • 2

  • 64A2.58565628C0D02.4C1D1


2

2.4


2

2.5A


2

  • C1D156B2.6K1C1D1C2D2C2D256BK2K3K4K16A6456B5648


2

2.6B


2

3DESf

fDESS-Substitution Boxesf32R48K32RE482.7


2

2.7E


2

2.8P


2

  • S-624


2

4DES

1Weak Key

DES

2Semi-weak Key

8


2

3DESComplement

DESmCKKmC

4S-

S-DES


2

5DES16Round

8DES

6

Plaintext PairCiphertext Pair


2

2.2.2 IDEA

International Data Encryption AlgorithmIDEAXuejia LaiJames Massey1990IDEADES


2

1

IDEA12864DES5664IDEAConfusionDiffusionVLSI


2

2

3IDEA

IDEA8Transformation644166


2

2.6 IDEA


2

2.7 IDEA


2

4

2.6IDEA525216128128816Z1Z2Z8Z116Most Significant16Z816Least Significant16258Z8Z9Z16258Z1Z2Z52


2

5IDEA

U1U2U52Z1Z2Z52


2

2.8 IDEA


2

2.2.3 AES

AES128bit128192256bitDESDES

Rijndael

RijndaelJoan DaemenVincent RijmenSquareWide Trail Strategy


2

  • 1

  • 1GF28

  • 2

  • 3

  • 4 x

  • 5 x


2

2

13


2

2FeistelRijndael3

S-


2

  • 3

  • Rijndael128192256bit

  • 1

  • 2

  • 3

  • 4


2

  • 4Rijndael

  • 1Rijndael

  • Nr 1


2

  • C

  • Rijndael ( State, CipherKey )

  • {

  • KeyExpansion ( CipherKey, ExpandedKey ) ;

  • AddRoundKey ( State, ExpandedKey ) ;

  • For (i=1 ; i<Nr ; i++ ) Round ( State, ExpandedKey + Nb*i) ;

  • FinalRound ( State, ExpandedKey + Nb*Nr ) ;

  • }


2

  • 2Rijndael

  • C

  • I _ Rijndael ( State, CipherKey )

  • {

  • I _ KeyExpansion ( CipherKey, I _ ExpandedKey ) ;

  • AddRoundKey ( State, I _ ExpandedKey +Nb*Nr ) ;

  • For (i= Nr - 1 ; i> 0 ; i-- ) Round ( State, I _ ExpandedKey + Nb*i) ;

  • FinalRound ( State, I _ ExpandedKey ) ;

  • }


2

  • I _ KeyExpansion C

  • I _ KeyExpansion ( CipherKey, I _ ExpandedKey )

  • {

  • KeyExpansion ( CipherKey, I _ ExpandedKey ) ;

  • For ( i=1 ; i< Nr ; i++ )

  • InvMixColumn (I _ ExpandedKey + Nb*i );

  • }


2

  • 5Rijndael

  • RijndaelK-

  • 6Rijndael


2

2.3


2

  • 2.3.1

  • RSA


2

  • 2.9

  • 1

  • 2

  • 3ABAB

  • 4BBB


2

2.9


2

  • 2.3.2 RSA

  • 1

  • am

  • a(m)1(mod m)

  • (m)mm


2

  • 2RSA

  • RSA

  • 1pq

  • 2n=pq(n)=(p1)(q1)

  • 3egcd(e(n))=1

  • 4dde1 (mod(n))

  • RSAlog2n

  • c=E(m)me(mod n)

  • D(c)cd(mod n)


2

  • 3

  • 1pq

  • 2ed


2

4RSA

n=pqRSA

pq(n)=(p1)(q1)de

de1(mod(n))

pq

1pq

2p1q1

3(p1q1)


2

  • 2.3.3 LUC

  • 1LUC

  • 2LUC

  • 3LUC

  • 1LUC

  • 2LUC

  • 4LUC

  • LUC

  • 1ned

  • 2cnep


2

2.3.4

1

E(x)xWeierstrass

y2+a1xy+a3y=x3+a2x2+a4x+a6


2

FFi=126x,yFEFGF(p)EO


2

PQPQLER

1

2

3

4EQ QP;

5EPQR:


2

O Abel

mP

2.1PEn OnP


2

  • 2

  • 3

  • 4

  • 1

  • 2


2

2.10ECCRSA/DSA


2

  • 3

  • 4

  • 5ECCRSADSA


2

  • ECCECCIC


2

2.4

  • 2.4.1


2

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6


2

  • 2.4.2

  • 1

  • AB

  • 1AB

  • 2AB

  • 3AB

  • 4 ABCCAB


2

2.11


2

  • 1

  • 2.12KDC


2

2.12


2

  • 2

  • 3

  • 4

  • 5

  • PINPIN


2

  • 2


2

  • 1


2

  • 2


2

2.13


2

2.14


2

  • 2.4.3 PKI

  • PKICA

  • 1<>

  • 2CA

  • 3

  • 4


2

2.15


2

2.16


2

2.17 PKI


2

2.18 PKI


2

2.5

  • 2.5.1

  • 1

  • 1

  • 2mh(m)


2

  • 3h(m)xmx=h(m)

  • 4m1m2h(m1)= h(m2)

  • 5m1m2h(m1)= h(m2)


2

  • 2

  • M64Blockm1m2mnDESCBCh0 = hi = Emi[hi1]G= hnG64MD5Secure Hash FuctionSHA


2

  • 2.5.2

  • Message Digests


2

2.19 MD5


2

  • MD5MD4

  • 1MD43MD5

  • 2MD4T[ i ]MD5

  • 3MD43MD5

  • 4MD5ABCDRivestAvalanche


2

  • 2.5.3 SHA

  • SHAMD5512SHA160532516

  • A=67452301

  • B=EFCDAB89

  • C=98BADCFE

  • D=10325476

  • E=C3D2E1F0


2

2.20 SHA512


2

2.11 SHA

ft (B,C,D)=(BC)V(

ft (B,C,D)=B

C

ft (B,C,D)=B

C


2

2.12 SHAKi


2

2.13 MD5SHA


2

  • 1

  • 2

  • 3


2

  • 2.5.4 DSA

  • DSA

  • p512

  • q160q | p1

  • gg=hp1/q mod ph[1,p1]

  • x0<x<q

  • yy=g x mod p

  • pqghyx


2

  • 1

  • 2

  • 3DSA1

  • r=gk mod pmod qs=rkh(m)x1 mod q

  • t=r1 mod qr=gt yst mod pmod q


2

  • 4DSA2

  • r=gk mod pmod qs=kh(m)+xr1 mod q


2

2.6

  • 1

  • 2

  • 3

  • 4

  • 5


  • Login