1 / 59

Measuring cosmological parameters

Measuring cosmological parameters. par movies. Using WMAP3 + SDSS LRGs:. 75%. 21%. 4%. Cmbgg OmOl. 386. 430. 13.8. . C = h = G = k b = q e = 1. Cmbgg OmOl. Particle physics. Standard model parameters:. Required. Cosmology. Optional. How flat is space?. Cmbgg OmOl. closed.

cian
Download Presentation

Measuring cosmological parameters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring cosmological parameters

  2. par movies

  3. Using WMAP3 + SDSS LRGs: 75% 21% 4% Cmbgg OmOl

  4. 386 430 13.8

  5. C = h = G = kb = qe = 1 Cmbgg OmOl Particle physics Standard model parameters: Required Cosmology Optional

  6. How flat is space? Cmbgg OmOl closed Why are we cosmologists so excited? flat open

  7. How flat is space? Cmbgg OmOl

  8. How flat is space? Somewhat. Cmbgg OmOl

  9. How flat is space? tot=1.003 Cmbgg OmOl

  10. Cmbgg OmOl CMB+SN Ia CMB+LRG Beth Reid et al, arXiv 0907.1559

  11. Cmbgg OmOl CMB + LSS

  12. Cmbgg OmOl CMB + LSS

  13. Cmbgg OmOl CMB + LSS

  14. Cmbgg OmOl CMB + LSS

  15. Planck + SDSS: n=0.008, r=0.012 Cmbgg OmOl CMB + LSS

  16. THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra

  17. 75% 21% 4% Cosmological data Cosmological Parameters

  18. 75% 21% 4% Cosmological data Cosmological Parameters ARE WE DONE?

  19. 75% 21% 4% ? Cosmological data Cosmological Parameters Why these particular values? Nature of dark matter? Fundamental theory Nature of dark energy? Nature of early Universe?

  20. 75% 21% 4% ? Cosmological data Cosmological Parameters Why these particular values? Nature of dark matter? Map our universe! Fundamental theory Nature of dark energy? Nature of early Universe?

  21. Physics with 21 cm tomography

  22. Courtney Peterson Tongyan Lin Mike matejek Andy Lutomirski Adrian Liu Chris Williams T H E O M N I S C O P E R S

  23. Courtney Peterson Tongyan Lin Joel Villasenor Ed Morgan Jackie Hewitt Mike matejek Andy Lutomirski Adrian Liu Chris Williams T H E O M N I S C O P E R S

  24. Scott Morrison T H E O M N I S C O P E R S

  25. Angelica de Oliveira-Costa Henrique Pondé Oliveira Pinto Nevada Sanchez Joe Lee Scott Morrison

  26. Matias Zaldarriaga T H E O M N I S C O P E R S

  27. Foreground modeling 0802.1525 • Foreground removal astro-ph/0501081, 0807.3952 0903.4890 • Optimal mapmaking 0909.0001 • Automatic calibration Liu et al, in prep • Faster correlation 0805.4414, 0909.0001 • Corner turning 0910.1351 • Survey design optimization 0802.1710

  28. What are we so excited?

  29. Our observable universe History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496 Last scattering surface

  30. Our observable universe LSS Last scattering surface 21cm tomography

  31. The time frontier LSS Last scattering surface 21cm tomography

  32. The scale frontier 21cm tomography

  33. Physics of the 21 cm Line: GMRT = Giant Metrewave Radio Telescope Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total)30 dishes 10,000 8,192 16 (4) # of Antennas(Installed)30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of TilesNA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2)5.1047.0.1041.0.105 ~ 104 1.0.104 1.0.106 Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o Angular Resolution3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz)50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity 15mK/(day)1/2 SiteIndia China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  34. Physics of the 21 cm Line: 21CMA/PaST = Primeval Structure Telescope Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total) 30 dishes 10,000 8,192 16 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2) 5.1047.0.1041.0.105 ~ 104 1.0.104 1.0.106 Imaging Field of View2o 3o - 7.5o ~ 5o 30o - 1o Angular Resolution 3.8o - 0.4o3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity15mK/(day)1/2 Site India China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  35. Physics of the 21 cm Line: v v v v v 77 sta. v v v 100 Km 2 Km 32 sta. LOFAR = Low Frequency ARray Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total) 30 dishes 10,000 8,192 16 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2) 5.1047.0.1041.0.105~ 104 1.0.104 1.0.106 Imaging Field of View 2o3o - 7.5o ~ 5o 30o - 1o Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity 15mK/(day)1/2 Site India China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  36. Physics of the 21 cm Line: MWA = Murchison Widefield Array Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total) 30 dishes 10,000 8,192 16 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2) 5.1047.0.1041.0.105 ~ 1041.0.104 1.0.106 Imaging Field of View 2o 3o - 7.5o~ 5o 30o - 1o Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity 15mK/(day)1/2 Site India China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  37. Physics of the 21 cm Line: Cas A Cygnus A 3C 392 PAPER = Precision Array to Probe Epoch of Reionization Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total) 30 dishes 10,000 8,192 16 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2) 5.1047.0.1041.0.105 ~ 104 1.0.1041.0.106 Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity 15mK/(day)1/2 Site India China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  38. Physics of the 21 cm Line: SKA = Square Kilometer Array Experiment GMRT PAST/21CMA LOFAR MWA PAPER SKA # of Antennas(Total) 30 dishes 10,000 8,192 16 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA 20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA 96 V crossed Dipoles Effective Area (m2) 5.1047.0.1041.0.105 ~ 104 1.0.104 1.0.106 Imaging Field of View 2o 3o - 7.5o ~ 5o 30o - 1o Angular Resolution 3.8o - 0.4o 3’ 25” - 3.5” ~ 15’ < 0.1’ Frequency Range (MHz) 50 - 1420 50 - 200 10 - 240 80 - 300 110 - 200 Mapping Sensitivity 15mK/(day)1/2 Site India China Netherlands Australia USA/AUS AUS(?) Year 2007 2007 2007 2008 2008 2015(?)

  39. 21 cm tomography experiments: PAST/21CMA PAPER LOFAR GMRT Image: FORTE satellite MWA SKA ?

  40. LARC: Lunar Array for Radio Cosmology Participants: MIT, Harvard, Washington, Berkeley, JPL, NRAO PI: Jacqueline Hewitt, MIT LARC

  41. The Omniscope MT & Matias Zaldarriaga, arXiv 0805.4414 [astro-ph]

  42. How get huge sensitivity at low cost? Sensitivity T (A)-1/2 Single-dish telescope: cost A1.35 Interferometer: cost N2  A2 FFTT telescope idea: cost A, ~2 Telescopes as Fourier transformers

More Related