1 / 81

Quarkonium experimental overview II

Quarkonium experimental overview II. Stephen Lars Olsen Seoul National University. France-Asia Particle Physics School, Les Houches, FRANCE October 11-12, 2011. X(3872). Z b (10610). Y(3940). Y(4260). Outline. Z b (10650). Lecture 2: Non-quarkonium, quarkonium-like

chinara
Download Presentation

Quarkonium experimental overview II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quarkoniumexperimental overview II Stephen Lars Olsen Seoul National University France-Asia Particle Physics School, Les Houches, FRANCE October 11-12, 2011

  2. X(3872) Zb(10610) Y(3940) Y(4260) Outline Zb(10650) Lecture 2: Non-quarkonium, quarkonium-like states and the future

  3. Summary (lecture 1) • The quarkonium spectra are strong evidence that hadrons are • composed of spin=1/2 constituent particles • All of the charmonium states below the M=2mD “open charm” • threshold have been found • -most of the bottomonium states below M=2mB have been identified • Above the threshold, most of the 1- - states, but only one of the • others (the cc2’) have been discovered. • The masses of the assigned states match theory predictions • -variations are less than ~50 MeV • Transitions between quarkonium states are in reasonably good • agreement with theoretical expectations

  4. Charmonium spectrum today Masses in pretty good agreement with theoretical expectations -- biggest discrepancies ~ 50 MeV -- y(4415) y(4150) y(4040) c’ c2 y” 2mD0

  5. g Transitions M1 transitions (G(keV)) J/yghc2.4 1.6 ± 0.4 y’ ghc4.6 1.1 ± 0.2 Th. Expt pp,h,p0 g e- E1 transitions Th. Expt 24 27 ± 4 29 27 ± 3 26 27 ± 3 313 426 ± 51 239 291 ± 48 114 110 + 19

  6. Hadronic transitions y’  J/y +hadrons • Gexp(keV) • y‘p+p-J/y88 ± 7 • y’ hJ/y 9 ± 1 • y’ p0J/y 0.4±0.1 pp, h, p0 pp,h,p0 g y’ J/y Ispin violation: y’p0J/y y’ppJ/y ~1/200

  7. Bottomonium spectrum today established recently discovered still not discovered 2MB = 10.56 MeV

  8. Constituent Quark Model Λ= (uds) Mesons are quark-antiquark pairs Baryons are quark-quark-quark thriplets Fabulously successful Quarks are probably the most well known particle physics quantity among the general public 8

  9. Why no other color-singlet combinations? Pentaquark: H-diBaryon Glueball Tetraquark mesons qq-gluon hybrid mesons Other possible “white” combinations of quarks & gluons: u d u d s _ u tightly bound 6-quark state S=+1 Baryon d s u s d Color-singlet multi- gluon bound state D0 _ c _ u loosely bound meson-antimeson “molecule” c tightly bound diquark-diantiquark u _ p _ u c _ _ u _ D*0 c _ _ c c

  10. predicted measured One strategy: Search for a meson that decays to a final state containing a c and c quark, If it is a standard qq meson, it has to occupy one of the unfilled states indicated above. If not, it is exotic. unassigned _ _

  11. p+p-/Jy systems produced in B decay Polarized along flight direction in B rest frame y’, X? EB=Ecm/2 B0KSy’; y’p+p-J/yare very useful decays for CP violation studies

  12. M(p+p-J/y) inBK(p+p-J/y) c c _ p+p- J/y _ c B meson y’p+p-J/y s s q _ K ??? M(p+p- J/y)-M(J/y) Belle PRL 91, 262001 (2003)

  13. X(3872) MX=3872.0±0.6 MeV G<2.3 MeV Belle PRL 91, 262001 (2003)

  14. X3872 is seen in many experiments CDF 9.4s 11.6s X(3872) BaBar D0 X(3872) CMS X(3872)

  15. _ Does it fit into the cc spectrum? This state is expected to decay to p+p-J/y y(4415) y(4150) y(4040) c’ c2 yc2 y” 3872 MeV 2mD0

  16. _ JPC =2--(& 2-+)  DD not allowed yc2 hc2 Spin=0 c D J = 2 P=-1 D0 or D+ q yc2 c (orhc2) J = L P = (-1)L For J = 2 P = (-1)2 = +1 q c q D c D0 or D- Spin=0 yc2 (hc2)DD violates parity

  17. _ _ Lowest possibility is DD* (or D*D) Spin=0 c D J = 2 P=-1 D0 or D+ q c J = L + S P = (-1)L For J = 2, L=1 is OK P = (-1)1 = -1 yc2 q (orhc2) c q D* c D*0 or D*- Spin=1 yc2 (hc2)DD* doesn’t violate parity MD+MD* is the “open charm threshold” for yc2 (&hc2)

  18. Is the X(3872) the yc2? Bf(yc2gcc1) Bf(yc2p+p-J/y) Eichten et al: PRL 98, 162002 (2002) >5 Fermilab 2003 “Look for Xgcc1, you should be flooded by events” yc2(1D) Xgcc1 cc1g J/y Eichten

  19. X(3872)gcc1 ?? Belle PRL 91, 262001 (2003) 3872 Bf(yc2gcc1) Bf(yc2p+p-J/y) <0.9 The X(3872) is not the yc2!!

  20. If not yc2, what??? Measure JPC quantum numbers 1st : find other decay modes: X(3872) g J/y is observed: Gp+p- J/y=(3.4±1.2) GgJ/y BK g J/y BaBar 2009 Belle 2010 PRL 102, 132001 M(g J/y ) M(g J/y )

  21. C(X3872)= + C(X3872) must be (-)(-) = + X3872 g J/y C = - C = - if C(X3872) is + : p+p- system in X3872p+p- J/y must come from rp+p- mr=775 MeV is at kinematic limit p+ C = - r Belle agrees CDF agrees p- X3872 rp+p- lineshape J/y C = - M(p+p- ) M(p+p- )

  22. JPC of X3872 is it 0-+?? spin polarization vectors p+ r p- p* X3872 J/y Τ Τ mutually perpendicular Decays of polarized J/y’s Decays of polarized r’s m+ p+ m- p-

  23. Does the X(3872) JPC = 0-+ ?? m+ qm 0-+ |cosqm| p+ p- y !!! m- |cosy| no, the X(3872) cannot be 0-+

  24. Does the X(3872) JPC = 1++ ?? Τ mutually perpendicular Τ S=0 X(3872) K B x S=0 Sx=0

  25. 1++ fits well m+ qm Belle Data p- c2/dof =1.56/4 c |cosc| p+ c2/dof =0.56/4 m- |cosqm|

  26. CDF angular correlation analysis Only 1++ or 2-+ fit data PRL 98 132002 1++ no adj. params 2- +2 adj. 2arams 1- - O++ 1++ fits well with no adjustable parameters 2-+ has one complex adjustable parameter

  27. JPC of the X(3872) = 1++? …or 2-+? Partial Wave basis: 775 MeV X(3872)r J/y is right at threshold  neglect higher partial waves 3872 MeV 3097 MeV 1++ 2-+ L=0 or 2: S-Wave D-wave S: 1 1,2 L=1 or 3: P-Wave F-wave S: 1,2 1,2 Only 1 amplitude: BLS=B01  1 free parameter: 2 amplitudes: BLS=B11& B12  3 free parameters normalization normalization complex Include relative phase f

  28. JPC of the X(3872) m+ J. Rosner PRD 70, 092023 (2004) qm p+ K c p+ m- c2/dof =1.56/4 c2/dof =4.60/4 1++ fits data well with no free parameters. 2-+ has a free complex parameter; one value gives an acceptable fit c2/dof =0.56/4 c2/dof =5.24/4

  29. _ Is there a 1++ cc state for the X3872? set by: Mcc2=3930 MeV ‘ • Mass is too low? • 3872 vs 3905 MeV theory • G(cc1  gy’) ~180 keV • G(cc1  g J/y) ~14 keV • G(gy’)/G(g J/y)>>1 • measurement: <2 ‘ c’ ‘ c1 T.Barneset al PRD 72, 054026 • Gp+p- J/y=(3.4±1.2)GgJ/y~45 keV ~100x expectaions for an Isospin-violating decay c.f.: G(y’p0J/y)≈0.4 keV

  30. _ Is there a 2-+ cc state for the X3872? set by: My”=3770 MeV • Mass is too high? • 3872 vs 3837 MeV T.J. Burns et al arXiv:1008.0018 • G(hc2  gy’) ~0.4 keV • G(hc2  g J/y) ~9 keV Y. Jiaet al arXiv:1007.4541 hc2 • Gp+p- J/y=(3.4±1.2) GgJ/y ~30 keV • huge for Ispin-violating decay • c.f.: G(y’p0J/y)≈0.4 keV • BKhc2violates factorization • BKhc not seen • BKcc2 barely seen • hc2  DD* expected to be tiny • expt: • G(XDD*)/G(XppJ/y)=9.5±3.1 Y. Kalasnakovaet al arXiv:1008.2895

  31. If not charmonium, what is it?

  32. X(3872)p+p-J/y Mass recent results LHCb Belle CDF ~6000 evts! MX = 3871.61 ± 0.16 ± 0.19 MeV MX = 3871.96 ± 0.46 ± 0.10 MeV MX = 3871.85 ± 0.27 ± 0.19 MeV

  33. X(3872) mass (in p+p-J/y channel only) _ MX(3872) –(MD0+MD*0)= -0.12 ± 0.35 MeV

  34. D0D*0 molecule? __ _ D0-D*0 “Binding Energy” small Dm = -0.12 ± 0.35 MeV …coincidence?? an “old” idea

  35. De Rujula, Glashow & Georgi (1976) PRL 38, 317 (1976) _ predictions: DD* JPC=1++ _ (DD*)molrJ/y p+p- Also: L. Okun& M. Voloshin JETP Lett. 23, 333 (1974)

  36. Search for other states

  37. Search for other states inBK p+p-p0 J/y decays p+ p0 p- c c _ J/y B meson wp+p-p0 s q _ K

  38. M(w J/y) unexpected peak at 3940 MeV Y3940p+p-p0J/y?? Y(3940) w M=3940 ± 11 MeV G= 92 ± 24 MeV S.-K. Choi et al (Belle) PRL94, 182002 (2005)

  39. Y(3940) confirmed BaBar PRL 101, 082001 B±K±wJ/y B0KSwJ/y ratio M(wJ/y) Some discrepancy in M & G; general features agree

  40. _ Does Y(3940)  DD* ? _ BKDD* Belle: PRD 81, 031103 _ _ M(DD*) M(DD*) 3940 MeV 3940 MeV No signal: 3940 MeV is well above DD & DD* threshold _ _

  41. Study e+e- J/y + anything C=- detected J/y C=- e+ e- J/y recoil system is undetected C=+ Recoil Mass:

  42. _ s(e+e-J/y+cc) unexpectedly big Unexpected peak at 3940 MeV e+e-J/y+hc ~30X NRQCD pred

  43. _ _ Use “partial reconstruction” tostudy X3940 DD or DD* J/y e+ e- reconstruct these _ “Recoil” D(*) undetected (inferred from kinematics) _ _ D* (or D) D (or D*)

  44. _ Bf(X(3940) DD*) is large 3940 MeV M = 3942 +7 ± 6 MeV Gtot = 37 +26 ±12 MeV Nsig =52 +24 ± 11evts -6 -15 _ _ -16 e+e- J/y + DD* arXiv:0708.3812 PRL 98, 802001 (2007) Bg subtracted

  45. Use “partial reconstruction” tosearch for X(3940)wJ/y J/y e+ e- “Recoil” J/y undetected (inferred from kinematics) detect these p J/y p p w3p 3940 MeV no signal:

  46. X3940 & Y3940are not the same from: e+e- J/y DD* _ from: B K wJ/y contradiction

  47. _ cc assignments for X(3940), Y(3915) & X(4160)? hc’’’ hc” cc0’ 3940MeV 3915MeV • Y(3915) = cco’? G(wJ/y) too large? • X(3940) = hc”?  mass too low?

  48. 1- - states seen via “radiative return” “initial-state-radiation” photon: gISR kg 1- - E’ Ecm if kg = 3.8~4.5 GeV, E’ = 3~5GeV

  49. Radiative return B-factory energies g ss cc bb 3~5 GeV 10.58 GeV Ecm(GeV)

  50. 233 fb-1 e+e- gisr Y(4260) at BaBar p+p- J/y BaBar PRL95, 142001 (2005) fitted values: M=4259  8 +2 MeV G = 88  23 +6 MeV -6 -9 Y(4260) ~50pb

More Related