1 / 32

Zátěž z pohledu energetického obratu

Zátěž z pohledu energetického obratu. Energetické zdroje pro svalovou kontrakci:. závisí na intenzitě a délce zátěže: ATP CP Glykogen Mastné kyseliny AMK. Výkonnost a vytrvalost.

charis
Download Presentation

Zátěž z pohledu energetického obratu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Zátěž z pohledu energetického obratu

  2. Energetické zdroje pro svalovou kontrakci: • závisí na intenzitě a délce zátěže: • ATP • CP • Glykogen • Mastné kyseliny • AMK

  3. Výkonnost a vytrvalost * Silová výkonnost je schopnost konat krátkodobou tělesnou fyzikální práci vysoké intenzity, vyjádřenou jako působení síly po dráze.Je dána pro danou svalovou skupinu především svalovou hmotou, její strukturou (typ svalových vláken), schopností jejího zapojení a pohybové koordinace, méně metabolizmem. * Vytrvalostní výkonnost se měří významně hůře než silová výkonnost (natož u izolované svalové skupiny), a proto v medicíněhovoříme ovytrvalostní zdatnosti. Je to schopnost vzdorovat dlouhodobězátěžovému stresu.Podstatou je schopnost regulací dosáhnout a udržet dostatečně dlouho (desítky minut a déle) fázi rezistence zátěžovému stresu.

  4. K čemu je nutná alespoň minimální vytrvalostní zdatnost • Schopnost regenerovat po akutní únavě, dlouhodobá tolerance vícefázového tréninku • Schopnost vydržet po celou sezónu (i u silově rychlostních sportů jako je sjezdové lyžování s délkou závodu několik minut) • Schopnost zregenerovat vegetativní systém po těžkém tréninku

  5. Práce, výkon a mechanická účinnost Práce: fyzikálně: síla po dráze [J]...tedy [N] x [m] nebo také výkon x čas 1 ml spotřebovaného O2 odpovídá práci 20.6 J ( = 4.92 cal) 1 J odpovídá 1/20,6 ..tedy 0,0485 ml O2 • Výkon (power): práce za čas [1W] =1J za sekundu ( postaru 9,81 W = 1 kpm za sekundu, 1 HP = 736 W) zátěž: na každý 1 W na ergometru: teoreticky: za 60 sec 0,0485 x 60.. 2,91 ml O2/min skutečná spotřeba na ergometru 12 – 13 ml, tedy účinnost cca 23%

  6. Interpretační problém: práce a výkon..práci lze považovat za ekvivalentní jen v rozumném intervalu výkonů a časů • biologicky vůbec není totéž konat práci a) výkonem 1000W po dobu 10 sekund b) výkonem 100W po dobu 100 sekund i když fyzikálně to stejná práce je. • Na druhé straně v rozumném intervalu rychlostí běhu spotřebujeme stejně energie na uběhnutí např. 5 km ať běžíme jakkoliv rychle (8 nebo 16 km/h) .. součin rychlosti a délky běhu je konstantní.. a tedy práce je stejná.

  7. Energetický výdej různých činnostípřepočtený na kyslík • klid (RDEE): 3,5 ml/kg/min = 1 MET • lehká zátěž 5 - 14 • střední zátěž 15 - 22 • těžká zátěž 22 - 29 • velmi těžká z. 30 a více (> 8.5 METS) Pro muže asi o 10 procent více.

  8. Sacharidy • Jediný zdroj (kromě zásob makroergních fosfátů na cca 10 - 15 sec) který může být metabolizován anaerobně za vzniku ATP • do střední intenzity zátěže je jimi kryta nejméně polovina energetických požadavků. • „tuky se spalují v ohni sacharidů“

  9. Anaerobní glykolýza • Z glykogenu či glukózy až na pyruvát či laktát • Tento max. desetistupňový proces nepotřebuje kyslík. Vše se děje ještě v cytosolu svalu. • Zisk je 4 – 6 molekul ATP z jedné molekuly glukózy • V delším časovém úseku vzniká jen malý zlomek ATP anaerobně (5 procent). Významný zdroj pouze na počátku zátěže.

  10. Informativní energetické hodnoty 1 gramu využitých makroživin (1 kcal = 4,2 kJ) • (Za předpokladu plně aerobního metabolizmu) • Sacharidy, okolo 4-5 kcal • Aminokyseliny 4-5 kcal • Mastné kyseliny 9-10 kcal

  11. Energetický ekvivalent pro kyslík • Slabě se mění s poměrem zmetabolizovaných makroživin • přibližně platí že na jeden litr spotřebovaného kyslíku vznikne 4.82 kcal • klidový metabolizmus máme okolo 3,5 ml kyslíku na kilogram hmotnosti a minutu, tedy 0,0035 * 4.82 kcal/kg/min, tedy • klidový metabol.= 0.0169 kcal/kg/min • (cca 1950 kcal/24 hod pro 80 kg muže)

  12. Několik čísel o energetickém výdeji během dne • Resting daily energy expenditure (RDEE) RDEE = 370 + 21,6 x fatfree body mass [kcal]..... pro muže 90 kg okolo 2000 kcal pro ženu 65 kg okolo 1500kcal • Fakultativní výdej běžně plus 10 – 35 procent • ale např. závodní cyklisté dlouhodobě příjmají 4000 – 5000 kcal a netloustnou, tedy: fakultativní výdej 3000 kcal + 1800 klidový.

  13. Hlavní komponenty energetického výdeje za 24 hodin průměrného mladého muže • Klidový metabolizmus: 60 – 75 % • metabolizmus během spánku • bazální metabolismus • metabolismus v klidném bdělém stavu • Přímá termogeneze a mechanická práce tělesnou aktivitou: 15 – 30 % • Termický účinek stravy : do 10 % • Pozátěžová regulační termogeneze do 5 %

  14. Hlavní komponenty energetického výdeje za 24 hodin vrcholového sportovce -vytrvalce • Klidový metabolizmus: 35 % • metabolizmus během spánku • bazální metabolismus • metabolismus v klidném bdělém stavu • Přímá termogeneze a mechanická práce tělesnou aktivitou: 50 % • Termický účinek stravy: 5 % • Pozátěžová regulační termogeneze: do 10%

  15. Energetické zásoby mladého štíhlého muže v klidu • makroergní fosfáty 7 kcal • svalový glykogen 1600 kcal • triacylglyceroly svalu 14800 kcal • triacylglyceroly tuk. tk. (6 kg TAG) 52 500 kcal • glykogen + glukóza depot mimo sval 326 kcal

  16. Vliv diety na energetický zdroj při zátěži: Christiansen &Hansen 1939 – test na vytrvalcích • Na 90 procentech sacharidů v dietě byli schopni 4 hodin zátěže s podílem tuku napřed 20 , na konci 60 procent • Na smíšené dietě vydrželi stejnou zátěž 3 h, s kontribucí 70 procent tuku na konci zát. • Na dietě tuk – bílkovina po 3 dnů před testem vydrželi stejnou zátěž jen hodinu, ale tuk přispíval k 70 – 90 procentům energ. výdeje

  17. Využití tuků k energetické úhradě zátěže u vytrvalce dle Ahlborga

  18. Jak je to interpretováno dnes • Problematika musí zahrnovat citlivost inzulínového receptoru a genetické vlivy • Pozvolný přechod k nízkoglykemizující stravě umožňuje odklon od vysokosacharidové ke smíšené dietě aniž byste platili za ignoranty • Vytrvalostní zátěž s krátkými odpočinky (45 min 60% VO2max + 15 min. přestávku) vydrží vytrvalec bez problému 6 hodin v euglykémii, jestliže před tím jedl. Nalačno bude mít hypoglykémie.

  19. Využití tuků v zátěži – intracelulární aspekty • při zátěži nad 85 procent maximální aerobní kapacity klesá utilizace mastných kyselin FA - a to i tehdy, když jsou umělým zásahem nabídnuty do plazmy. • Musí tedy existovat nitrobuněčná regulace jejich využití a hledá se další klíčový bod regulace, jiný než malonyl - CoA (ten stoupá typicky když se do buňky dostává víc glukózy přes inzulínovou signální dráhu). • Nicméně základní regulace platí: usnadněním dodávky glukózy klesá utilizace tuků. • Podíl tuků jako energetického zdroje je u vytrvalostně adaptovaného svalu vyšší i při stejné dodávce glukózy.

  20. Aerobní využití laktátu v zátěži • La- putuje do sousedních buněk a je za jistých podmínek utilizován i vzdálenými svaly. • Tento proces ale z větší části neprobíhá pomocí difůze - ta je pro disociovaný La- příliš pomalá. Je zajišťována bílkovinnými nosiči - monokarboxylátovými přenašeči (MCT). • Jsou to společné nosiče pro pyruvát, laktát, ketoglutarát, hydoxybutarát a acetoacetát.

  21. Energetický obrat krátkodobé zátěže • Na čem je závislý? Na činném průřezu svalu a z větší části nikoliv na energetických, ale na biomechanických faktorech a neuromuskulární koordinaci.. • Výkon krátkodobý není tolik ovlivněn utilizací substrátů ale spíše periferní únavou • V této souvislosti se tradičně, ale ne zcela právem, hovoří o laktátu

  22. Které buňky jsou vybaveny rychlým transportem laktátu do krve ? • Selský rozum (i učebnice ) říkají že rychlá glykolytická vlákna • Množí se ale důkazy, že v savčím svalu je pravděpodobně transportní kapacita pro usnadněnou difůzi přes bílkovinné přenašeče vyšší pro rychlá oxidativní vlákna než pro vlákna rychlá glykolytická. • Seniorům ubývají více vlákna rychlá glykolytická, SILOVÝM tréninkem zvyšují svoji VYTRVALOST. Zdá se že zlepšeným aerobním metabolismem laktátu.

  23. Laktát a únava • LA silně v buňce dissociuje a je odčerpáván podstatně rychleji než odpovídá jeho vzestupu v krvi • Pokles výkonnosti svalu koreluje s vzestupem koncentrace vodíkových protonů (Proč: Návrhy: 1) zhoršením přechodu příčných můstků mezi dvěma polohami ke kontrakci, 2) snižuje max. rychlost zkrácení myofibril, 3) inaktivuje myofibrilární myozinovou ATPázu, 4) zpomaluje aerobní glykolýzu, přes vápník hned dvěmi cestami

  24. Výsledky posledních let – in vitro modelace za co nejfyziologičnějších podmínek(teplota, parc. tlaky plynů) • Max. rychlost zkrácení myofibril asi není závislá na proton loadu (na množství dissoc. laktátu) • Je zpochybňován i efekt protonů na max. sílu • Intracelulárně asi není proton loadem ovlivněna role vápníku. • Začíná se více zdůrazňovat role SID [Na+] + [K+] + [Ca2+] - [Cl-] - [La-]

  25. Energetický výdej různých činnostípřepočtený na kyslík • klid (RDEE): 3,5 ml/kg/min = 1 MET • lehká zátěž 5 - 14 • střední zátěž 15 - 22 • těžká zátěž 22 - 29 • velmi těžká z. 30 a více (> 8.5 METS) Pro muže asi o 10 procent více.

  26. Závěry pro krátkodobou zátěž • Hlavní zdroj sacharidy + CK • Intracelulárně je udržována překvapivě dlouho homeostáza, adaptací se tento stav dá vylepšit více než aerobní kapacita. • Nabídka substrátů založena na sacharidech • Podstata periferní svalové únavy není dosud plně objasněna.

  27. Hodinový kalorický výdej při běhu

  28. Distribuce energetického výdeje v populaci Průměr většiny z nás: HYPOKINEZE Sport jako hobby PROFESIONÁLNÍ SPORT

  29. Hlavní komponenty „health related fitness“ • Kardiovaskulární (aerobní) fitnes • Přiměřená svalová síla s minimem dysbalancí • flexibilita páteře • méně podkožního tuku

  30. Hlavní adaptace vytrvalostního vrch. sportovce z hlediska metabolizmu • Adaptační svalovou hyperplázií s vzestupem svalové hmoty + vzestupem lean body mass stoupá počet inzulinových receptorů na jednotku hmotnosti • opakovanou zátěží stoupá rapidně citlivost inzulinových receptorů • Zrychluje se čas k zapojení lipolýzy • Pozdější vyplavení pozdního stresového hormonu • Menší citlivost řady enzymů na přehřátí

  31. Praktické aspekty pro sport • Sport délky do hodiny: není třeba měnit předem dietu ani doplňovat zásoby. Benefit z jídla během závodu je menší než zhoršení perfuze svalů z překrvení splanchniku. • Vícehodinový závod: strategie klasická: zvýšit sacharidy v dnech před závodem, vyvarovat se těžkého tréninku aby se nezničily zásoby glykogenu. Glukózy dostanete do oběhu do 50 g/hod. Glukózové nápoje:150-300 ml á 15 – 20 min, s obsahem 4 – 8 váhových procent glukózy a jejích polymerů, + Na v množství 0,5 – 0,7 g/l. • Hypertonický roztok glukózy není obvykle vstřebán a může způsobit dehydrataci

  32. Glykogenová superkompenzace: pro zátěž od 45 min do maratonu (sporná pro kratší délky závodu) • cca 6 dní před: zatěžovat ty svaly které používá daný sport, ale za vysokotukové a nízkosacharidové diety. Intenzita tréninku mírná až střední, délka větší. Poprvé asi jen po 1 – 2 dny, poté maximálně 4 dny • asi 3 dny před závodem přepnout na vysokosacharidovou dietu, nezatěžovat se • rizik stejně mnoho jako benefitů

More Related