1 / 18

Supplementary Material

Supplementary Material Catalytic Friedel -Crafts Acylation: Magnetic Nanopowder CuFe 2 O 4 as a Proficient and Magnetically Separable Catalyst Ramarao Parella , Naveen, Amit Kumar and Srinivasarao Arulananda Babu *

Download Presentation

Supplementary Material

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supplementary Material Catalytic Friedel-Crafts Acylation: Magnetic Nanopowder CuFe2O4 as a Proficient and Magnetically Separable Catalyst RamaraoParella, Naveen, Amit Kumar and SrinivasaraoArulanandaBabu* Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.Fax: +91-172-2240266.E-mail: sababu@iisermohali.ac.in S1

  2. Separation/recovery of the nano CuFe2O4catalyst:1After the reaction period, EtOAc (1-2 mL) was added to the reaction flask containing the crude reaction mixture and stirred for 1-2 min. Step 2: A magnet was externally appended to the RB flask and the magnetic nano CuFe2O4 catalyst was accumulated at the walls of the flask, the resulting clear solution was transferred in to a fresh RB flask using a dropper. Next, the Steps1& 2 were repeated thrice. Then, the catalyst containing flask was dried in an oven (at 100-110 oC, overnight) and the catalyst can be recycled. The FT-IR spectra and PXRD patterns of the used magnetic nano CuFe2O4 catalyst revealed the absence of any characteristic peaks of organic impurities in the used magnetic nano CuFe2O4. Further, the HRTEM images of the used magnetic nano CuFe2O4 revealed that the morphology of the used CuFe2O4 nanoparticles is considered to be stable. The catalyst was recovered in the following reaction. FC acylation Reaction Condition = rt, 1,2-DCE (2mL), 24 h (or) FC acylation Reaction Condition = Heating, 1,2-DCE (2mL), 80 oC, 24 h S2

  3. S3

  4. FC Reaction Condition= heating Nano CuFe2O4 (after 1st use) S4

  5. FC Reaction Condition= heating Nano CuFe2O4 (after 1st use) Powder X-ray diffraction (PXRD) patterns[1]were recorded on a diffractometerusing parallel beam geometry equipped with a Cu – K source, 2.5° Primary and secondary solar slits, 0.5° divergence slit with 10 mm height limit slit, sample rotation stage (120 rpm) attachment and DTexUlta detector. The tube voltage and current applied were 40 kV and 40 mA. The data were collected over an angle range 10 to 70° with a scanning speed of 5° per minute with 0.02° step. Reference. E. Matei, A. M. Predescu, A. Predescu, E. Vasile, C. Predescu, J. Optoelectron Adv. M. 5 (2011) 296. S5

  6. A= PXRD pattern of pure CuFe2O4 powder before use. B= PXRD pattern of nanopowder CuFe2O4 after the 3rd usage in the FC acylation of 1a with 2 under heating condition. C= PXRD pattern of nanopowder CuFe2O4 after the 1st usage in the FC acylation of 1a with 2 under rt condition. D= XRD pattern of nanopowder CuFe2O4 after the 2nd usage in the FC acylation of 1a with 2 under rt condition. E= XRD pattern of nanopowder CuFe2O4 after the 3rd usage in the FC acylation of 1a with 2 under rt condition. S6

  7. S7

  8. FC Reaction Condition= rt Nano CuFe2O4 (after 1st use) S8

  9. FC Reaction Condition= rt Nano CuFe2O4 (after 2nd use) S9

  10. FC Reaction Condition= rt Nano CuFe2O4 (after 3rd use) S10

  11. HRTEM FC Reaction Condition= rt Nano CuFe2O4 (after 1st use) After 1st use CuFe2O4 S11

  12. HRTEM FC Reaction Condition= rt Nano CuFe2O4 (after 2nd use) After 2nd use CuFe2O4 S12

  13. HRTEM FC Reaction Condition= rt Nano CuFe2O4 (after 3rd use) After 3rd use of CuFe2O4 S13

  14. Mostly, all the ketones obtained in this work are known compounds and are identified by comparison with the data available in the literature.2-7 Representative characterization data for the unknown compounds are given below. (3-Bromo-4-methoxyphenyl)(p-tolyl)methanone (3h): Following the general procedure described in the article, 3h was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as white colour solid mp 103-105 oC; Yield: 66% ; IR (KBr): 1645, 1590, 1270, 1051 and 749 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.02 (d, 1H, J = 2.0 Hz), 7.75 (dd, 1H, J1= 8.5, J2 = 2.12 Hz), 7.64 (d, 2H, J = 8.1 Hz), 7.26 (d, 2H, J = 8.0 Hz), 6.93 (d, 2H, J = 8.5 Hz), 3.95 (s, 3H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.0, 159.1, 143.1, 135.3, 134.8, 131.4, 129.9, 129.0, 111.6, 110.9, 56.5, 21.6; MS (CI): m/z (%) 306 ([M+1]+, 100), 305 ([M]+, 100), 259 (10), 227 (20). (3-Chloro-4-methoxyphenyl)(2-chlorophenyl)methanone (3m): Following the general procedure described in the article, 3h was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as white colour solid mp 132-134 oC; Yield: 75% ; IR (KBr): 1660, 1590, 1274, 1055 and 755 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.71 (d, 1H, J = 2.2 Hz), 7.68 (dd, 1H, J1= 8.6, J2 = 2.1 Hz), 7.44 - 7.34 (m, 4H), 6.95 (d, 1H, J = 8.6 Hz), 3.96 (s, 3H);13C NMR (100 MHz, CDCl3): δ192.9, 159.3, 138.2, 131.9, 131.2, 131.0, 130.9, 130.0, 129.6, 128.9, 126.8, 123.0, 111.3, 56.4; MS(CI): m/z (%) 281 ([M]+, 50), 266 (10), 227 (10). S14

  15. 1-(3-Chloro-4-methoxyphenyl)hexan-1-one (3y):Following the general procedure described in the article, 3y was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as yellow colour liquid; Yield: 75% ; IR (CH2Cl2): 2956, 1727, 1568, 1020 and 699 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.95 (s, 1H), 7.83 (d, 1H, J = 8.6 Hz), 6.92 (d, 1H, J = 8.6 Hz), 3.92 (s, 3H ), 2.84 (t, 2H, J = 8.3 Hz), 1.69 -1.21 (m, 6H), 0.88 (t, 3H, J = 4.1 Hz); 13C NMR (100 MHz, CDCl3): δ 198.2, 158.5, 130.6, 130.4, 128.4, 122.7, 111.2, 56.3, 38.2, 31.5, 24.1, 22.5, 13.9; HRMS: (ESI) calcd for C13H17ClO2:[M + H]+ 241.0995, found [M + H]+ 241.0996. 1-(3-Chloro-4-methoxyphenyl)heptan-1-one (3z):Following the general procedure described in the article, 3z was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as yellow colour liquid; Yield: 74% ; IR (CH2Cl2): 2928, 1720, 1594, 910 and 699 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.99 (d, 1H, J = 2.0 Hz), 7.83 (dd, 1H, J1 = 2.0 Hz, J2 = 8.6 Hz), 6.95 (d, 1H, J = 8.6 Hz), 3.96 (s, 3H ), 2.89 (t, 2H, J = 7.4 Hz), 1.72-1.25 (m, 8H), 0.90 (t, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 198.1, 158.5, 130.6, 130.3, 128.4, 122.7, 111.2, 56.3, 38.2, 31.6, 29.0, 24.3, 22.5, 14.0; HRMS: (ESI) calcd for C14H19ClO2:[M + H]+ 255.1152, found [M + H]+ 225.1157. S15

  16. 2-Chlorophenyl(1-methyl-1H-pyrrol-3-yl)methanone(3ai): Following the general procedure described above, 3ai was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 60:40) as brown colour liquid; Yield: 57% ; IR (CH2Cl2): 2950, 1702, 1610, 1115 and 875 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.38-7.27 (m, 4H), 6.94 (t, 1H, J = 1.8 Hz), 6.59 (q, 2H, J = 2.9 Hz), 3.60 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 189.1, 140.2, 130.7, 130.3, 130.0, 129.9, 129.8, 128.5, 126.3, 125.2, 124.0, 110.4, 36.7. Mesityl(thiophen-2-yl)methanone(6a):Following the general procedure described above, 6a was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as green colour liquid; Yield: 61% ; IR (CH2Cl2): 2929, 1723, 1589, 1020 and 785 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.62 (q, 1H, J = 1.1 Hz), 7.25 (q, 1H, J = 1.0 Hz), 7.0 (q, 1H, J = 3.8 Hz), 6.80 (s, 1H ), 2.23 (s, 3H), 2.08 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 192.8, 145.0, 138.7, 136.9, 135.0, 134.7, 134.1, 128.4, 128.2, 21.1, 19.2; MS(CI): m/z (%) 231 ([M+1]+, 100), 212 ([M]+, 10), 153 (9), 111 (10). S16

  17. Magnetic NanopowderCuFe2O4 –Catalyzed Friedel-Crafts Acylation Plusible Mechanism S17

  18. References For a recent reference on the synthesis/characterization of CuFe2O4 see: Matei, E.; Predescu, A.; M. Predescu, A.; Vasile, E.; Predescu, C. J. Optoelectron Adv. M.2011, 5, 296. (a) Olah, G. A. Friedel-Crafts Chemistry; Wiley: New York, 1973. (b) Franck, H. G. Industrial Aromatic Chemistry; Springer: Berlin, 1988. (c) Dasgupta, S.; Torok, B. Curr. Org. Synth.2008, 5, 321. (d) Guidotti, M.; Coustard, J.-M.; Magnoux, P.; Guisnet, M. Pure Appl. Chem.2007, 79, 1833. (e) Kozhevnikov, I. V. Appl. Cat. A: Gen.2003, 256, 3. (f) Losfeld, G.; Escande, C.; Vidal de La Blache, P.; L’Huillier, L; Grison, C. Catal. Today2012, 189, 111. (g) Chua, C. K.; Pumera, M. Chem. A Asian J.2012, 7, 1009. (h) Sartori, G.; Maggi, R. Chem. Rev.2011, 111, PR181. (i) Bonrath, W.; Aquino, F.; Haas, A.; Hoppmann, S.; Netscher, T.; Pace, F.; Pauling, H. Sustainability2009, 1, 161. (j) Roux, C. L.; Dubac, J. Synlett2002, 181. (a) Kawada, A.; Mitamura, S.; Kobayashi, S. Synlett1994, 545. (b) Répichet, S.; Roux, C. L.; Roques, N.; Dubac, J. Eur. J. Org. Chem.1998, 2743.(c) Kawamura, M.; Cui, D.-M.; Hayashi, T. Shimada, S. Tetrahedron Lett.2003, 44, 7715. (d) Tran, P. H.; Duus, F.; Le, T. N. Tetrahedron Lett.2012, 53, 222. Kawada, A.; Mitamura, S.; Kobayashi, S. J. Chem. Soc., Chem. Commun. 1996, 183. (a) Babu, S. A.; Yasuda, M.; Baba, A. Org. Lett. 2007, 9, 405. (b) Nishimoto, Y.; Babu, S. A.; Yasuda, M.; Baba, A. J. Org. Chem.2008, 73, 9465 and references therein. (a) Ranu, B. C.; Ghosh, K.; Jana, U. J. Org. Chem.1996, 61, 9546. (b) Mukaiyama, T.; Suzuki, K.; Sik Han, J.; Kobayashi, S. Chem. Lett.1992, 435. (c) Sharghi, H.; Jokar, M.; Doroodmand, M. M.; Khalifeh, R. Adv. Synth. Catal.2010, 352, 3031. (d) Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F. Tetrahedron2004, 60, 10843. (a) Hodges, J. M.; Gonzalez, J.; Koontz, J.; Myers, W. H. Harman, W. D. J. Org. Chem.1995, 60, 2125. (b) Barbero, M.; Cadamuro, S.; Degani, I.; Fochi, R.; Gatti, A.; Regondi, V. J. Org. Chem.1988, 53, 2245. (c) Carson, J. R.; Davis, N. M. J. Org. Chem.1981, 46, 839. (d) Strekowski, L.; Wydra, R. L.; Cegla, M. T.; Czarny, A.; Patterson, S. J. Org. Chem.1989, 54, 6120. (e) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. (f) Cahiez, G.; Luart, D.; Lecomte,F. Org. Lett.2004, 6, 4395. (g) Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron2012, 68, 6557.(h) Chena, J.-Y.; Chena, S.-C.; Tanga, Y. J.; Moub, C.Y.; Tsaia, F.-Y. J. Mol. Catal. A: Chem. 2009, 307, 88.(i) Su, W.; Jin, C. Synth. Commun. 2004, 34, 4249. S18

More Related