1 / 54

LSO - from Discovery to Commercial Development

LSO - from Discovery to Commercial Development. C. L. Melcher CTI, Inc. Knoxville, TN, USA. Acknowledgments. Schlumberger-Doll Research, Ridgefield J. S. Schweitzer, R. A. Manente, C. A. Peterson California Institute of Technology, Pasadena T. A. Tombrello, H. Suzuki LETI, Grenoble

celine
Download Presentation

LSO - from Discovery to Commercial Development

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LSO - from Discovery to Commercial Development C. L. Melcher CTI, Inc. Knoxville, TN, USA

  2. Acknowledgments • Schlumberger-Doll Research, Ridgefield • J. S. Schweitzer, R. A. Manente, C. A. Peterson • California Institute of Technology, Pasadena • T. A. Tombrello, H. Suzuki • LETI, Grenoble • J. J. Aubert, Ch. Wyon • CTI, Inc., Knoxville • R. Nutt, M. Andreaco • St. Petersburg State Technical University, St. Petersburg • P. A. Rodnyi and co-workers • Institute of Single Crystals, Kharkov • B. Minkov, M. V. Korzhik, and co-workers • Ural State Technical University, Ekaterinburg • B. V. Shulgin and co-workers Calor 2002

  3. Properties of the ideal scintillator • High light output • Fast decay time • High density • High atomic number • Good energy resolution • Suitable emission wavelength • Good mechanical strength • Non-hygroscopic • Practical crystal growth • Low cost Calor 2002

  4. Strengths/weaknesses of various scintillators Calor 2002

  5. Search strategy for new scintillators • Identify suitable luminescent center • Suitable emission wavelength • High transition probability • Compatible with host material • Identify candidates for host material • High density • High atomic number • Transparent • Non-hygroscopic • Practical crystal growth • Synthesize candidates • Solid state synthesis by sintering powders • Characterize scintillation properties • Single crystal growth Calor 2002

  6. Powder synthesis of candidate materials Calor 2002

  7. Ce3+ activators • 4f – 5d transition • Allowed dipole transition • Typically high quantum efficiency • Typically 20-60 ns decay time • Emission wavelength usually 350 –450 nm depending on crystal field of host; e.g. GSO:Ce, BaF2:Ce, CeF3 Calor 2002

  8. Ln2SiO5 host materials “Growth of lanthanide oxyorthosilicate single crystals and their structural and optical characteristics,” G. V. Anan’eva, A. M. Korovkin, T. I. Merkulyaeva, A. M. Morozova, M. V. Petrov, I. R. Savinova, V. R. Startsev, and P. P. Feofilov, Akademii Nauk SSSR, Izvestiya, Seriya Neorganicheskie Materialy, V 17, N 6, p. 754-8, June 1981. • Czochralski crystal growth of Ln2SiO5, Ln = Y, Gd-Lu • Crystal structure • Physical characteristics • Melting point • Density • Refractive Index • Doping with Nd3+, Ho3+, Er3+, Tm3+, Yb3+ Calor 2002

  9. Early papers • Melcher, U.S. Patent No. 4,958,080 (1990) • Melcher and Schweitzer, IEEE Conf. Rec. (1991) • Rodnyi (1992) • Minkov, Functional Materials (1994) • Shulgin et al. (1990) • Melcher and Schweitzer, IEEE Trans. Nucl. Sci. (1992) • Melcher and Schweitzer, Nucl. Instr. Meth. (1992) Calor 2002

  10. Crystal structure vs. RE radius Calor 2002

  11. Crystal structure: Lu2SiO5 (LSO) Monoclinic C Space group C2/c Lattice constants a = 14.254 Å b = 6.641 Å c = 10.241 Å b = 122.2º Calor 2002

  12. Crystal growth – practical requirements • Congruent melting (solid and liquid have same composition in equilibrium) • Reasonable melting point (compatible with crucible and furnace materials) • Mechanically strong material • Reasonable distribution coefficient for dopant Calor 2002

  13. Dopant concentration vs fraction of melt pulled Calor 2002

  14. Czochralski growth of single crystals Pull ~ 1 mm/hr Rotation ~5 rpm Seed crystal Iridium crucible Crystal melt Induction heater Insulation Calor 2002

  15. Czochralski growth of single crystal LSO 2070oC Calor 2002

  16. Transmission of pure and Ce-doped LSO Calor 2002

  17. Low temperature (11K) excitation spectra Calor 2002

  18. Low temperature (11K) emission spectra Calor 2002

  19. Ce1 + Ce2 = gamma ray emission Calor 2002

  20. Pulse height spectrum of 137Cs Calor 2002

  21. Coincidence resolving time (511 keV) Calor 2002

  22. Intrinsic background radiation • 2.6% of naturally occurring Lu is Lu-176 • Beta decay with primary gamma rays of 88, 202, 307 keV • Count-rate from Lu-176 • 0 – 1000 keV: 40 counts/sec/g Calor 2002

  23. Scintillation efficiency* h = bSQ * Lempicki et al., Nucl. Instr. Meth. A333, 304-311 (1994) Calor 2002

  24. Scintillator properties Calor 2002

  25. Photon interaction cross sections Calor 2002

  26. Emission spectra at room temperature Calor 2002

  27. Scintillation decay times Calor 2002

  28. Coincidence resolving time Calor 2002

  29. Commercialization issues • Raw materials • Availability of large quantities • Low cost • Recycling of scrap • Factory • Low cost growth stations • Reliable electrical power • Cooling water system • Growth control system • Detector processing Calor 2002

  30. Abundance of Lu Element Abundance (ppmw) Lu 0.8 I 0.45 Tl 0.85 Cd 0.15 W 1.25 Bi 0.009 Ge 1.5 Hg 0.085 Calor 2002

  31. Raw materials Lu2O3 Calor 2002

  32. LSO factory Calor 2002

  33. Electrical power Battery backup Dual electrical service (3 MW) Calor 2002

  34. Cooling water system 1000 gpm Calor 2002

  35. Cooling towers Calor 2002

  36. Nitrogen supply Calor 2002

  37. Crystal boules Calor 2002

  38. LSO production boules Picture of 50 boules Calor 2002

  39. Light output of all LSO crystals - 2002 Calor 2002

  40. Energy resolution of all LSO crystals - 2002 Calor 2002

  41. LSO decay time Calor 2002

  42. Light output uniformity within a boule Calor 2002

  43. Energy resolution uniformity within a boule Calor 2002

  44. Decay time uniformity within a boule Calor 2002

  45. Detector processing Calor 2002

  46. Detector processing – robotic assembly of pixels Calor 2002

  47. Detector processing – Ultraviolet light cures adhesive Calor 2002

  48. Detector with PMTs Calor 2002

  49. LBNL PET detector modules • PD Array Identifies Crystal of Interaction • PMT Provides Timing Pulse and Energy Discrimination • PD+PMT Measures Energy Deposit • PD / (PD+PMT) Measures Depth of Interaction 1” square PMT PD array 64 element LSO array Custom IC Calor 2002 Courtesy of W. W. Moses, LBNL - CFI

  50. UCLA Calor 2002 Courtesy of UCLA Crump Institute

More Related