音速抑制法による
This presentation is the property of its rightful owner.
Sponsored Links
1 / 35

音速抑制法による 太陽内部の 対流数値計算 PowerPoint PPT Presentation


  • 40 Views
  • Uploaded on
  • Presentation posted in: General

音速抑制法による 太陽内部の 対流数値計算. 横山研究室 修士 2 年 堀田英之. 共同研究者 : 横山央明 [1] , M. Rempel [2] , Y. Fan [2] [1] 東京大学 [2]HAO(High Altitude Observatory). 太陽黒点数 11 年周期. 太陽の黒点数 ( 面積 ) は 11 年の周期を持って変動している. 90. 3 0. EQ. 3 0. 90. 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010.

Download Presentation

音速抑制法による 太陽内部の 対流数値計算

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


6330653

音速抑制法による太陽内部の対流数値計算

横山研究室 修士2年

堀田英之

共同研究者:横山央明[1], M. Rempel[2], Y. Fan[2]

[1]東京大学 [2]HAO(High Altitude Observatory)


6330653

太陽黒点数11年周期

太陽の黒点数(面積)は11年の周期を持って変動している

90

30

EQ

30

90

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Date

Hathaway/web


6330653

太陽ダイナモ

太陽の磁場活動を駆動していると考えられているのが太陽ダイナモ

ダイナモとは運動エネルギーを磁場エネルギーに変換すること

太陽ダイナモはΩ効果とα効果

という2つの機構で成り立って

いると考えられている。

Ω効果:差動回転により磁場を

引き延ばす。ポロイダル磁場

からトロイダル磁場

α効果:いつどこで、効果が

効いているのか諸説あるが、

コリオリ力によって、磁場の方向

を変える。トロイダル磁場から

ポロイダル磁場

Ω効果

ポロイダル方向

α効果

トロイダル方向

(桜井ほか「太陽」)


6330653

修士課程での研究

  • 磁束輸送ダイナモにおける表面乱流拡散の重要性(Hotta & Yokoyama, 2010a, ApJ, 709, 1009)

  • 太陽大規模磁場の対称性(Hotta & Yokoyama, 2010b, ApJL, 714, L308)

  • 自転角速度の大きい太陽型星の内部角速度分布(Hotta & Yokoyama, 2010c in prep)

  • 音速抑制法による太陽内部の対流数値計算(Hotta et al., 2011, in prep)


6330653

磁束輸送ダイナモにおける表面乱流拡散の重要性

Hotta & Yokoyama, 2010a

ApJ

線:

ポロイダル磁場の磁力線

色のコンター:

トロイダル磁場の強さ

今までのモデルでは

極付近に観測と合わない

磁場が生成されて

しまったが、対流層上部

に強い乱流拡散がある

と仮定することでこれを

避けることができる。


6330653

太陽大規模磁場の対称性どうやったら磁場は双極子になるのか

Symmetric Parameter

diffusivity profile

quadrupole

Hotta & Yokoyama, 2010b, ApJL

表面付近に強い乱流拡散が

あると、双極子磁場になることを

発見。

dipole

明るい色:対称な磁場

暗い色:反対称な磁場


6330653

回転の速い星での差動回転

自転角速度が大きくなると

差動回転がTaylor-Proudman

状態に近くなる。

Our sun

non-Taylor-Proudman

parameter

2

1

4

8

16

Taylor-Proudman

real solar DR by observation


6330653

最終的な動機付け(博士課程での研究)

太陽内部角速度分布を再現する自己無撞着なモデルの確立

太陽内部の対流を解きつつ、角運動量輸送、放射層での

物理を調べる。Miesch+(2000)などでは高解像度のシミュレーションを

行うことで新たな知見を得ている。

450 nHz

425 nHz

400nHz

375 nHz

350 nHz

325 nHz

300 nHz

日震学により得られた太陽の差動回転

(Thompson+ 2003)

Taylor-Proudman state

(Rempel 2005)


6330653

太陽の対流層を計算するのはなにが難しいのか?

音速が速いことである。対流層の底で音速が200 km/s。

それに対して、対流の速度は100 m/s。

対流の時間スケールもしくは、11年スケールの現象を知りたいが、

CFL条件により時間ステップは音速で解かなければいけない。

対流層の底でスケールハイトが70000 km10点で解像したとき

時間ステップは、40秒ほどとなる。

これを100TFLOPSの計算機で11年分計算するのに数10年かかる。

この難しさを回避する何らかの方法をとらなければ、今の計算資源

では太陽対流層を計算して、科学的結果を得ることができない。


6330653

アネラスティック近似

100 m/s

200 km/s

velocity

対流速度

音速

他の方法?

アネラスティック

近似

アネラスティック近似では、

音速を無限大とする。マッハ数が

1より十分小さい時、良い近似

である。しかし、数値計算では

通信が多く発生し、2000CPU

くらいまでしかスケールしない

(M. Miesch氏談)

通信の少ない方法は逆の方向

に行くことで達成できるのでは?

M. Miesch氏提供


Rss reduced sound speed technique

音速抑制法RSS(Reduced Sound Speed) technique

以下の方法で、人工的に連続の式を変えることで音速を遅くする

この方法で音速はξ倍遅くなる。

有限差分法も使える上に、陽解法で全ての方程式が解ける。

しかし、この方法は対流を計算する上で妥当な技法なのだろうか?

本研究では、近似無し、RSS法、anelastic近似での2次元、3次元

対流を比較し、RSS法の妥当性を問う。


6330653

対流とは?

粘性熱伝導がなければ、温度勾配が

断熱温度勾配より急な時、対流が起こる。

(Schwartzchild条件)

エントロピーが上に行くに従って、減少して

いるとき、対流が起こるといいかえることも

できる。

エントロピーの勾配を見積もる量として

superadiabaticity という量がある

superadiabaticityを用いるとエントロピーの勾配は


6330653

方程式系

連続の式

運動方程式

エネルギー方程式

背景場は静水圧平衡を仮定して、そこからの擾乱成分を解く。

Reynolds数、Prandtl数、スケールハイトで規格化した計算領域、

superadiabaticityが依存しないパラメーター


6330653

数値スキーム

  • 4次精度の中央差分で空間微分

  • 4次精度のRunge-Kuttaで時間積分

  • 人工粘性はRempel(2009)で使われたもの

modified Lax-Wendroff

(CANS) 時間空間2次精度

空間・時間4次精度

スキーム


6330653

2次元定常対流

解像度:400x100

R

音速と典型的対流速度の比は

(~1/300: bottom)

Re=260 Pr=1

2.18(Hr)

8.72 (Hr)


6330653

RMS速度

Horizontal RMS velocity

Vertical RMS velocity

Height

Height


6330653

マッハ数

C : reduced sound speed


6330653

2次元非定常対流

解像度:400x100

R

音速と典型的対流速度の比は

(~1/300: bottom)

Re=500 Pr=1

2.18(Hr)

8.72 (Hr)

full movie


6330653

RMS速度

特徴的な速度はあっている、しかし

時間平均が短いため、定常の時に比べて一致は悪い


6330653

赤-y方向速度

青-密度

緑-x方向速度

黒-z方向速度


6330653

3次元非定常対流

4.36(Hr)

200 grid

3次元対流の場合。

完全に非定常な振る舞い

を見せる

Re=260 Pr=1

4.36(Hr)

200 grid

2.18(Hr)

100 grid

vertical

velocity

vertical

velocity

entropy


6330653

RMS速度の時間発展

RMS速度も非線形で非定常な振る舞いをみせる


6330653

時間平均したRMS速度

時間平均したRMS速度はξによらない

3次元対流での音速抑制法の妥当性は証明された


Superadiabaticity stix the sun

太陽内部のsuperadiabaticity(Stix “The Sun”より)


6330653

まとめ

  • 太陽対流層の計算をする上で、音速が非常に速いことが大きな困難である

  • アネラスティック近似を用いて、今まで計算されているが、多くのCPUを使う計算ではスケールしないことが知られている

  • 音速抑制法を用いればその困難を回避することができる

  • これからの目標は音速抑制法を用いてアネラスティック近似の研究を再現すること

  • 2年後の次世代スパコン完成時に超並列化された大規模計算をおこない太陽内部を理解する


6330653

おまけのページ


Super artificial viscosity

Super artificial viscosity

The diffusive flux is determined as follows


6330653

セル境界での値の決め方

ul

ur

i+1

i


6330653

セル境界での値の決め方

ul

ur

i+1

i


6330653

セル境界での値の決め方

ul

ur

i+1

i


6330653

セル境界での値の決め方

ul

ur

i+1

i


Ratio of speed of sound and convection

ratio of speed of sound and convection


What is the helioseismology

What is the helioseismology?

太陽のpモードが固有振動を

作る。太陽表面の振動を

長い時間観測すると

右図のような図を得ることが

できる。

太陽標準モデルからのどのような

擾乱によって、この図を得ることが

できるか流体の逆問題を解くことに

よって求める。

周波数

水平方向の波数


Inhomogeneous

inhomogeneous ξ

  • 不均一なξは使えないと今では考えている。

  • 圧力勾配を変えるのは、ダイナミクスを変えすぎる。


Anelastic approximation

anelastic approximation

anelastic 近似により、速度場が上記のようにポテンシャルで

表せる。これをフーリエ変換により展開して、W、Lの時間発展を

解く。

フーリエ変換時に毎回グローバルの通信が必要になり、

大量のCPUを使う計算では、効率が悪くなる。


  • Login