1 / 38

Mean Field Methods for Nuclear Structure

Mean Field Methods for Nuclear Structure. Nguyen Van Giai Institut de Physique Nucléaire Université Paris-Sud, Orsay. Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock-Bogoliubov Approaches Part 2: Nuclear Excitations: The Random Phase Approximation. Nguyen Van Giai.

carolyn
Download Presentation

Mean Field Methods for Nuclear Structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mean Field Methods for Nuclear Structure Nguyen Van Giai Institut de Physique Nucléaire Université Paris-Sud, Orsay Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock-Bogoliubov Approaches Part 2: Nuclear Excitations: The Random Phase Approximation Istanbul, part I Nguyen Van Giai

  2. Outline of part 1 • - Introduction • - Non-relativistic energy density functional • - Densities and Potentials • - HF and HFB in spherical symmetry • - Illustrative examples • - Summary Istanbul, part I Nguyen Van Giai

  3. Microscopic approaches to many-body, finite nuclear systems • Theoretical models based on effective interactions between nucleons: - Nuclear shell model - Mean fieldapproaches (and beyond): -Non-Relativistic (Skyrme forces, Gogny force) -Relativistic (RMF,RHF) - Molecular dynamics • goingaway from stability regions, we need a theoretical framework which can bepredictiveand able to handle new situations (continuum, pairing correlations in continuum). • theHartree-Fock + Random Phase Approximation (and their extensions to include pairing effects) can be used from unstable nuclei to neutron star crust. Istanbul, part I Nguyen Van Giai

  4. Hartree-Fock, and HF-Bogoliubov for systems with pairing correlations Istanbul, part I Nguyen Van Giai

  5. Energy Density Functional in Hartree-Fock Istanbul, part I Nguyen Van Giai

  6. Effective Interaction: Skyrme force particle-hole channel: particle-particle channel: Skyrme interaction zero-range Pairing channel: Istanbul, part I Nguyen Van Giai

  7. Densities • Normal density, or density matrix • Abnormal density, or pairing tensor Istanbul, part I Nguyen Van Giai

  8. One-body densities in Hartree-Fock Istanbul, part I Nguyen Van Giai

  9. The Energy Density Functional Istanbul, part I Nguyen Van Giai

  10. The Skyrme-HF equations Variations with respect to single-particle wave functions: Istanbul, part I Nguyen Van Giai

  11. The Skyrme-HF effective masses Istanbul, part I Nguyen Van Giai

  12. The Skyrme-HF central potentials Istanbul, part I Nguyen Van Giai

  13. The spin-orbit and Coulomb potentials Istanbul, part I Nguyen Van Giai

  14. The center-of-mass correction Istanbul, part I Nguyen Van Giai

  15. Spherical case: radial equations in r-space Istanbul, part I Nguyen Van Giai

  16. Potentials Densities Effective masses Spin-orbit potentials From: Bender et al., Revs.Mod.Phys., 75, 121(2003) Istanbul, part I Nguyen Van Giai

  17. N-Z Binding Energy Errors A=N+Z From: Bender et al., Revs.Mod.Phys., 75, 121(2003) Istanbul, part I Nguyen Van Giai

  18. 2-neutron separation energies From: Bender et al., Revs.Mod.Phys., 75, 121(2003) Istanbul, part I Nguyen Van Giai

  19. Single-particle energies From: Bender et al., Revs.Mod.Phys., 75, 121(2003) Istanbul, part I Nguyen Van Giai

  20. r.m.s. radii From: Bender et al., Revs.Mod.Phys., 75, 121(2003) Istanbul, part I Nguyen Van Giai

  21. Generalization to Hartree-Fock-Bogoliubov Istanbul, part I Nguyen Van Giai

  22. HFB densities in spherical case • Nuclear density • Abnormal (or pairing) density • Kinetic energy density • Spin density Istanbul, part I Nguyen Van Giai

  23. The Hartree-Fock-Bogoliubov Equations Istanbul, part I Nguyen Van Giai

  24. Hartree-Fock field and pairing field Istanbul, part I Nguyen Van Giai

  25. Enuc= ESkyrme+ Epair [ r,k] Finite-TemperatureHFB DT(r) = Vpair kT(r) fi=(1+eEi/kT)-1 where : Istanbul, part I Nguyen Van Giai

  26. Quasiparticle continuum Istanbul, part I Nguyen Van Giai

  27. Treatment of quasiparticle continuum (1) Istanbul, part I Nguyen Van Giai

  28. Treatment of quasiparticle continuum (2) Istanbul, part I Nguyen Van Giai

  29. Treatment of quasiparticle continuum (3) Istanbul, part I Nguyen Van Giai

  30. Discretization by box boundary condition • Alternatively, one can enclose the system in a box of radius R. • The quasiparticle spectrum is calculated with the boundary condition that the wave function vanishes at r=R. • One thus obtains a discrete set of states forming a complete basis in the box. Istanbul, part I Nguyen Van Giai

  31. illustration: Ni isotopes Istanbul, part I Nguyen Van Giai

  32. E. Khan, N. Sandulescu Nguyen Van Giai Istanbul, part I Nguyen Van Giai

  33. Inner Crust Matter ~ r0 ~ 0.001r0 ~ 0.5 r0 Crystal lattice structures Istanbul, part I Nguyen Van Giai

  34. Elementary cells Wigner-Seitz cell Elementary cell Lattice Istanbul, part I Nguyen Van Giai

  35. Density in the Wigner-Seitz Cells N.Sandulescu,Nguyen Van Giai,R.J.Liotta, Phys.Rev.C69(2004)045802 Istanbul, part I Nguyen Van Giai

  36. Pairing Field in the Wigner-Seitz Cells N.Sandulescu, Phys.Rev.C70 (2004) 025801 Istanbul, part I Nguyen Van Giai

  37. SUMMARY • A self-consistent theory of nuclear ground states. • Pairing and continuum effects are treated. • Applications to the description of unstable nuclei. • Applications to the physics of the inner crust of neutron stars. Istanbul, part I Nguyen Van Giai

  38. Lectures on:Mean Field Methods for Nuclear StructureList of references for further reading • 1. P. Ring, P. Schuck, “The Nuclear Many-Body Problem”, Springer-Verlag (New York, 1980) • 2. Hartree-Fock calculations with Skyrme’s interaction. I: spherical nuclei, D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972) • 3. Hartree-Fock calculations with Skyrme’s interaction. II: axially deformed nuclei, D. Vautherin, Phys. Rev. C 7, 296 (1973) • 4. A Skyrme parametrization from subnuclear to neutron star densities, E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer: Part I, Nucl. Phys. A 627, 710 (1997); Part II, Nucl. Phys. A 635, 231 (1998); Erratum to Part II, Nucl. Phys. A 643, 441 (1998) • 5. Self-consistent mean-field models for nuclear structure, M. Bender, P.-H. Heenen, P.-G. Reinhard, Revs. Mod. Phys. 75, 121 (2003) • 6. Hartree-Fock-Bogoliubov description of nuclei near the neutron drip line, J. Dobaczewski, H. Flocard, J. Treiner, Nucl.Phys. A 422, 103 (1984) • 7. Mean-field description of ground state properties of drip line nuclei: pairing and continuum effects, J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.-F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996) • 8. Pairing and continuum effects in nuclei close to the drip line, M. Grasso, N. Sandulescu, N. Van Giai, R. Liotta, Phys. Rev. C 64, 064321 (2001) • 9. Nuclear response functions, G.F. Bertsch, S.F. Tsai, Phys. Rep. 12 C (1975) • 10. A self-consistent description of the giant resonances including the particle continuum, K.F. Liu, N. Van Giai, Phys. Lett. B 65, 23 (1976) • 11. Continuum quasiparticle random phase approximation and the time-dependent HFB approach, E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66, 024309 (2002) • 12. Self-Consistent Description of Multipole Strength in Exotic Nuclei I: Method, J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, 034310 (2005) • 13. Self-consistent description of multipole strength: systematic calculations, J. Terasaki, J. Engel, ArXiv nucl-th/0603062 Istanbul, part I

More Related