# Compare ideal Interpolation filter and interpolation by LSE FIR filter(2) - PowerPoint PPT Presentation

1 / 23

Compare ideal Interpolation filter and interpolation by LSE FIR filter(2). Advisor : Dr. Yuan-AN Kao Student: Bill Chen. Outline. FIR Filter by Windowing Comparison (Simulation) Conclusion Reference. Design of FIR Filter By Windowing(1/2). Design of FIR Filter By Windowing (1/2).

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

Compare ideal Interpolation filter and interpolation by LSE FIR filter(2)

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

## Compare ideal Interpolation filter and interpolation by LSE FIR filter(2)

Student: Bill Chen

### Outline

• FIR Filter by Windowing

• Comparison (Simulation)

• Conclusion

• Reference

M+1=55

Alpha=0.5M

Beta

### Comparison(1/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (2/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (3/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.1pi

Stopband freq=0.3pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (4/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.1pi

Stopband freq=0.3pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (5/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.17pi

Stopband freq=0.23pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (6/14)

Filter coefficient M=55

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.17pi

Stopband freq=0.23pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta

### Comparison (7/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta0

### Comparison (8/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta0

### Comparison (9/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta3

### Comparison (10/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta3

### Comparison (11/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta6

### Comparison (12/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

Ideal interpolation filter with Kaiser Window

Alpha=0.5*(M-1)

Beta6

### Comparison (13/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

### Comparison (14/14)

Filter coefficient M=11

Interpolation filter by LSE FIR filter

Upsample=5

Cutoff freq=0.2pi

Passband freq=0.15pi

Stopband freq=0.25pi

### Reference

• F.M.Gardner, ”Interpolation in digital modems-Part I :Fundamental” IEEE Trans.Commun.,vol.41 pp.502-508,Mar.1993

• J.V.,F.L.,T.S.,andM.R. ”The effects of quantizing the fractional interval in interpolation filters”

• Heinrich Meyr ,Marc Moeneclaey ,Stefan A. Fechtel “Digital Communication Receivers”. New York :Wiley 1997

• C. S. Burrus, A. W. Soewito and R. A. Gopnath, “Least Squared Error FIR Filter Design with Transition Bands,” IEEE Trans. Signal Processing, vol. 40, No. 6, pp.1327-1338, June 1992.

• Heinrich Meyr ,Marc Moeneclaey ,Stefan A. Fechtel “Digital Communication Receivers”. New York :Wiley 1997

• Alan V. Oppenheim ,Ronald W. Schafer with John R. Buck “Discrete-Time Signal Processing”.